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When we wrote the drills and exercises for Geometric Algebra for Computer
Science, we intended them to be for self-study. As such, we are tempted to release
solutions to all the drills and structural exercises. However, as some instructors
may wish to use these as homework questions, for now we are only releasing the
solutions to all of the drills and to most of the odd numbered structural exercises.
In the future, we plan to release solutions to all of the structural exercises, since
solutions to these questions will likely appear on the internet anyway.



Chapter 2

Spanning Oriented Subspaces

2.12 Exercises

2.12.1 Drills

1. Compute the outer products of the following 3-space expressions, giving the
results relative to the basis {1, e1, e2, e3, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2 ∧ e3}.
Show your work.

(a) (e1 + e2) ∧ (e1 + e3)

Worked solution:

(e1 + e2) ∧ (e1 + e3)

= e1 ∧ e1 + e1 ∧ e3 + e2 ∧ e1 + e2 ∧ e3

= −e1 ∧ e2 + e2 ∧ e3 − e3 ∧ e1

(b) (e1 + e2 + e3) ∧ (2e1)

Answer: 2e3 ∧ e1 − 2e1 ∧ e2

(c) (e1 − e2) ∧ (e1 − e3)

Answer: e2 ∧ e3 + e3 ∧ e1 + e1 ∧ e2

(d) (e1 + e2) ∧ (0.5e1 + 2e2 + 3e3)

Answer: 3e2 ∧ e3 − 3e3 ∧ e1 + 1.5 e1 ∧ e2

(e) (e1 ∧ e2) ∧ (e1 + e3)

Answer: e1 ∧ e2 ∧ e3

(f) (e1 + e2) ∧ (e1 ∧ e2 + e2 ∧ e3)

Answer: e1 ∧ e2 ∧ e3

2. Given the 2-blade B = e1 ∧ (e2 − e3) that represents a plane, determine if
each of the following vectors lies in that plane. Show your work.

(a) e1
Worked solution:

e1 ∧B = e1 ∧ (e1 ∧ (e2 − e3))

= e1 ∧ e1 ∧ (e2 − e3)

= 0

Answer: In the plane.
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(b) e1 + e2

Answer: Not in the plane.

(c) e1 + e2 + e3

Answer: Not in the plane.

(d) 2e1 − e2 + e3

Answer: In the plane.

3. What is the area of the parallelogram spanned by the vectors a = e1 + 2e2
and b = −e1 − e2 (relative to the area of e1 ∧ e2)?

Worked solution:

a ∧ b = (e1 + 2e2) ∧ (−e1 − e2)

= −e1 ∧ e1 − e1 ∧ e2 − 2e2 ∧ e1 − 2e2 ∧ e2

= −e1 ∧ e2 + 2e1 ∧ e2

= e1 ∧ e2

Answer: 1

4. Compute the intersection of the non-homogeneous line L with support vector
e1 and direction vector e2, and the lineM with support vector e2 and direction
vector (e1 + e2), using 2-blades. Does the basis have to be orthonormal?

Answer: Clearly x should be a linear combination of e1 and e2. So set
x = αe1 + βe2. The demand that x is on L is x ∧ e2 = e1 ∧ e2. This yields
αe1 ∧ e2 = e1 ∧ e2, so that α = 1. Similarly, the demand that x be on M
gives α− β = −1. Therefore the solution is x = e1 + 2e2.

5. Compute (2 + 3e3) ∧ (e1 + e2 ∧ e3) using the grade-based defining equations
of the outer product.

Worked solution:

3∑

k=0

3∑

`=0

〈2 + 3e3〉k ∧ 〈e1 + e2 ∧ e3〉` =

= 〈2 + 3e3〉0 ∧ 〈e1 + e2 ∧ e3〉1 +

〈2 + 3e3〉1 ∧ 〈e1 + e2 ∧ e3〉1 +

〈2 + 3e3〉0 ∧ 〈e1 + e2 ∧ e3〉2 +

〈2 + 3e3〉1 ∧ 〈e1 + e2 ∧ e3〉2
= 2 ∧ e1 + 3e3 ∧ e1 + 2 ∧ (e2 ∧ e3) + 3e3 ∧ (e2 ∧ e3)

= 2e1 + 3e3 ∧ e1 + 2(e2 ∧ e3)

2.12.2 Structural Exercises

1. The outer product was defined for a vector space Rn without a metric, but it
is of course still defined when we do have a metric space. In R2 with Euclidean
metric, choose an orthonormal basis {e1, e2} in the plane of a and b such that
e1 is parallel to a. Write a = α e1 and b = β (cosφ e1 + sinφ e2), where φ is
the angle from a to b. Evaluate the outer product. Your result should be:

a ∧ b = αβ sinφ (e1 ∧ e2). (2.14)

What is the geometrical interpretation?

Answer: The outer product evaluation is straightforward. In the answer,
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e1∧e2 denotes the unit amount of area in the e1∧e2-plane. The parallelogram
spanned by a and b has an e1-base of α, and a e2-height of β sin(φ), so the
factor αβ sinφ is indeed the correct amount of area. The geometric algebra
result gives both magnitude and attitude.

3. The anti-commutative algebra has unusual properties, so you should be careful
when computing. For real numbers, (x+ y) (x− y) = x2− y2, and for the dot
product of two vectors (in a metric vector space) this corresponds simply to:
(x+y) · (x−y) = x ·x−y ·y. Now for comparison compute (x+y)∧ (x−y)
and simplify as far as possible. You should get −2x ∧ y, which is a rather
different result than the other products give! Verify with a drawing that this
algebraic result makes perfect sense geometrically in terms of oriented areas.

Answer: (x+ y)∧ (x− y) = x∧ x+ y ∧ x− x∧ y− y ∧ y = −2x∧ y. The
drawing involves the parallelograms formed by x∧y, and by (x+y)∧ (x−y).
You recognize some similar triangles and it is clear that the area of the latter
is twice as big. But makes sure you also get the correct relative orientation of
−1.

5. Consider R4 with basis {ei}4i=1. Show that the 2-vector B = e1∧e2+e3∧e4 is
not a 2-blade. (i.e., it cannot be written as the outer product of two vectors).
Hint: Set a∧b = B, develop a and b onto the basis, expand the outer product
onto the bivector basis; attempt to solve the resulting set of scalar equations.

Answer: Set a = a1 e1+a2 e2+a3 e3+a4 e4, b = a1 e1+a2 e2+a3 e3+a4 e4.
Then we get a∧b = (a1b2−b1a2)e1∧e2+(a3b4−b3a4)e3∧e4+(a1b3−b1a3)e1∧
e3 + (a1b4 − b1a4)e1 ∧ e4 + (a2b3 − b2a3)e2 ∧ e3 + (a2b4 − b2a4)e2 ∧ e4. The
first two coefficients should be 1, the rest should be 0. Those zero coefficients
yield a1

a3
= b1

b3
, a1
a4

= b1
b4

, a2
a3

= b2
b3

, a2
a4

= b2
b4

. As a consequence, a1
a2

= a1
a4

a4
a2

=
b1
b4
b4
b2

= b1
b2

, so that the first coefficient is also 0. That is a contradiction.

9. Prove (2.13): Ak ∧Bl = (−1)klBl ∧Ak.

Answer: This is easily shown by expanding each of the blades as an outer
product of vectors, and swapping those vectors:

Ak ∧Bl = (a1 ∧ a2 ∧ · · · ∧ ak) ∧ (b1 ∧ b2 ∧ · · · ∧ bk)

= a1 ∧ a2 ∧ · · · ∧ ak ∧ b1 ∧ b2 ∧ · · · ∧ bl

= (−1)a1 ∧ a2 ∧ · · · ∧ ak−1 ∧ b1 ∧ ak ∧ b2 ∧ · · · ∧ bl

= (−1)2 a1 ∧ a2 ∧ · · · ∧ ak−1 ∧ b1 ∧ b2 ∧ ak ∧ · · · ∧ bl

= · · ·
= (−1)l a1 ∧ a2 ∧ · · · ∧ ak−1 ∧ b1 ∧ b2 ∧ · · · ∧ bl ∧ ak

= (−1)2l a1 ∧ a2 ∧ · · · ∧ ak−2 ∧ b1 ∧ b2 ∧ · · · ∧ bl ∧ ak−1 ∧ ak

= · · ·
= (−1)kl b1 ∧ b2 ∧ · · · ∧ bl ∧ a1 ∧ a2 ∧ · · · ∧ ak

= (−1)klBl ∧Ak
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Chapter 3

Metric Products of
Subspaces

3.11 Exercises

3.11.1 Drills

1. Let a = e1 +e2 and b = e2 +e3 in a 3-dimensional Euclidean space R3,0 with
orthonormal basis {e1, e2, e3}. Compute the following expressions, giving the
results relative to the basis {1, e1, e2, e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2 ∧ e3}. Show
your work.

(a) e1ca
Worked solution:

e1ca = e1c(e1 + e2)

= e1ce1 + e1ce2
= 1 + 0 = 1

Answer: 1

(b) e1c(a ∧ b)

Worked solution:

e1c(a ∧ b) = e1c
(
(e1 + e2) ∧ (e2 + e3)

)

= e1c(e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3)

= e1c(e1 ∧ e2) + e1c(e1 ∧ e3) + e1c(e2 ∧ e3)

= (e1ce1) ∧ e2 − e1 ∧ (e1ce2) + (e1ce1) ∧ e3 − e1 ∧ (e1ce3) +

(e1ce2) ∧ e3 − e2 ∧ (e1 ∧ e3)

= e2 − 0 + e3 − 0 + 0− 0

Alternatively, develop the contraction on the bivector components:

e1c(a ∧ b) = e1c((e1 + e2) ∧ (e2 + e3))

=
(
e1c(e1 + e2)

)
∧ (e2 + e3))− (e1 + e2) ∧

(
e1c(e2 + e3)

)

= (e2 + e3) + 0

Answer: e2 + e3

7
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(c) (a ∧ b)ce1
Answer: 0

(d) (2a + b)c(a + b)

Answer: 9

(e) ac(e1 ∧ e2 ∧ e3)

Answer: e2 ∧ e3 + e3 ∧ e1

(f) a∗

Answer: −e2 ∧ e3 − e3 ∧ e1

(g) (a ∧ b)
∗

Answer: e1 − e2 + e3

(h) acb∗

Answer: e1 − e2 + e3

2. Compute the cosine of the angle between the following subspaces given on an
orthonormal basis of a Euclidean space:

(a) e1 and α e1

Answer: 1

(b) (e1 + e2) ∧ e3 and e1 ∧ e3

Answer: 1/
√

2

(c) (cosφ e1 + sinφ e2) ∧ e3 and e2 ∧ e3

Answer: sinφ

(d) e1 ∧ e2 and e3 ∧ e4

Answer: 0

3. Set up and draw the reciprocal frame for vectors b1 and b2, on an orthogonal
basis {e1, e2} represented as b1 = e1 and b2 = e1 + e2. Use the reciprocal
frame to compute the coordinates of the vector x = 3e1 + e2 on the {b1,b2}-
basis.
Partial Worked Solution:

I2 = b1 ∧ b2

I−12 = b2 ∧ b1

b1 = −10b2cI−12

= b2c(b2 ∧ b1)

= (b2cb2) ∧ b1 +−11b2 ∧ (b2b1)

= ((e1 + e2)c(e1 + e2)) ∧ b1 − b2 ∧ ((e1 + e2)ce1)

= 2b1 − b2 = e1 − e2

Answer: b1 = e1 − e2, b2 = e2, and x = 2b1 + b2.

3.11.2 Structural exercises

1. In 2-dimensional Euclidean space R2,0 with orthonormal basis {e1, e2}, let us
determine the value of the contraction e1c(e1 ∧ e2) by means of its implicit
definition (3.6) with A = e1 and B = e1 ∧ e2. Let X range over the basis of
the blades: {1, e1, e2, e1 ∧ e2}. This produces four equations, each of which
gives you information on the coefficient of the corresponding basis element in
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the final result. Show that e1c(e1 ∧e2) = 0 (1) + 0 (e1) + 1 (e2) + 0 (e1 ∧e2).

Answer: Use (3.6) as X ∗ (e1ce1 ∧ e2)) = (X ∧ e1) ∗ (e1 ∧ e2):

1 ∗ (e1c(e1 ∧ e2)) = (1 ∧ e1) ∗ (e1 ∧ e2) = 0

e1 ∗ (e1c(e1 ∧ e2)) = (e1 ∧ e1) ∗ (e1 ∧ e2) = 0

e2 ∗ (e1c(e1 ∧ e2)) = (e2 ∧ e1) ∗ (e1 ∧ e2) = 1

(e1 ∧ e2) ∗ (e1c(e1 ∧ e2)) = (e1 ∧ e2 ∧ e1) ∗ (e1 ∧ e2) = 0.

Therefore e1c(e1 ∧ e2) has only an e2 component, which equals 1, so e1c(e1 ∧
e2) = e2.

3. Derive the following dualities for the right contraction, corresponding to (3.20)
and (3.21) for the usual (left ) contraction:

Cb(B ∧A) = (CbB)bA universally valid (3.33)

Cb(BbA) = (CbB) ∧A when A⊆C (3.34)

Then give the counterpart of (3.24). (Hint: use (3.19).)

Answer: Using (3.19), these can be converted to proven statements about
the left contraction. For the first statement, this gives:

Cb(B ∧A) =
(
(Ã ∧ B̃)cC̃

)∼
=
(
Ãc(B̃cC̃)

)∼
= (B̃cC̃)

∼
bA = (CbB)bA.

The second statement is similar.

5. The equation xcα = 0 (in (3.8)) also has a consistent geometric interpretation
in the sense of Section 3.3. Since the scalar α denotes the point at the origin,
xcα has the following semantics: ‘the subspace of vectors perpendicular to
x, contained in the 0-blade α’. Give a plausible correctness argument of this
statement.

Answer: The only ‘vector’ contained in α is 0, so that is the result. Since
the answer should be a blade of grade 0− 1 = −1, combining this result with
the recursion formula (B.4) in Appendix B explains why blades of negative
grade should be algebraically 0. Geometrically, this means that they do not
exist.

7. Duality in 1-dimensional space should avoid the extra sign involved in double
duality, as specified in (3.24). Show this explicitly, by taking the dual of a
vector a relative to a suitably chosen unit pseudoscalar for the space, and
dualizing again.

Answer: All vectors are proportional to some unit vector e, so set a =
αe. Then a∗ = αece−1 = α. Double dualization gives (a∗)

∗
= αe−1 =

αe/e2 = a/e2. In a Euclidean space, this in indeed equal to a, but in an
anti-Euclidean space where e2 = −1, it is not. The problem (and (3.24))
needs this refinement.

9. In a plane with unit pseudoscalar I2, we can rotate a vector by a straight
angle using the contraction: xcI2 is a perpendicular to x. Therefore you
can construct an orthogonal basis for the plane from any vector in it. Use
this capability to give a coordinate-free specification of a rotation of a vector
x, over φ radians in that plane. Make sure you get the rotation direction
correctly related to the plane’s orientation. (We will do rotations properly in
Chapter 7.)

Answer: R[x] = cos(φ)x− sin(φ)xcI2.
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11. Derive the notorious ‘bac-cab formula’ for the cross product (i.e., a×(b×c) =
b (a·c)−c (a·b)), directly from its definition (3.28). What is the corresponding
formula using ∧ and c, and its geometric interpretation?

Answer:

a× (b× c) = (a ∧ (b ∧ c)
∗
)
∗

= −ac(b ∧ c)

= b (a · c)− c (a · b).

This is essentially the formula for the contraction product of a vector onto a
2-blade, a special instance of the much more general ‘passing through’ formula
of (3.16). The geometric semantics of both formulations is clearly the same.
It constructs a vector that resides in the plane of the 2-blade, perpendicular
to the vector a. This derivation is so straightforward that you can now forget
the formula.

13. In a non-orthonormal basis, the outer product bi ∧ bi of a vector and its
corresponding reciprocal is not generally zero. However, when summed over
all basis vectors, all those 2-blades cancel out:

∑

i

bi ∧ bi = 0. (3.35)

Show this by expressing bi on the usual basis {bj}, and using a symmetry
argument on the resulting double summation.

Answer: To avoid trivial signs, let us compute the reverse order:

∑

i

bi ∧ bi =

=
∑

i

(−1)i−1 bi ∧ (b1 ∧ b2 ∧ · · · ∧ b̆i ∧ · · · ∧ bn)/In

=
(∑

i

(−1)i−1 bic(b1 ∧ b2 ∧ · · · ∧ b̆i ∧ · · · ∧ bn)
)
/In

=
∑

i

(−1)i−1
∑

j<i

(−1)j−1(bi · bj) (b1 ∧ · · · ∧ b̆j ∧ · · · ∧ b̆i ∧ · · · ∧ bn)/In

+
∑

i

(−1)i−1
∑

j>i

(−1)j(bi · bj) (b1 ∧ · · · ∧ b̆i ∧ · · · ∧ b̆j ∧ · · · ∧ bn)/In

=
∑

i

∑

j<i

(−1)i+j (bi · bj) (b1 ∧ · · · ∧ b̆j ∧ · · · ∧ b̆i ∧ · · · ∧ bn)/In

−
∑

i

∑

j>i

(−1)i+j (bi · bj) (b1 ∧ · · · ∧ b̆i ∧ · · · ∧ b̆j ∧ · · · ∧ bn)/In.

The sign is different depending on whether j is less than or more than i. But
the terms look the same under interchange of j and i. When doing the double
sum, each such term involving (bi · bj) or (bj · bi) occurs twice, with two
opposite signs. Therefore the total result is zero.



Chapter 4

Linear Transformations of
Subspaces

4.9 Structural Exercises

1. Point mirroring in 3D space leads to a change of orientation of the volume
3-blades. We know this ‘spatial inversion’ better from reflection in a mirror.
Show that that has indeed the same effect. (Hint: Let the mirror plane be
characterized by a 2-blade B, and let a be a vector perpendicular to B (for
example, a = B∗). Then define the linear transformation performing the
mirror reflection, and apply it to a sensibly chosen 3-blade in this set-up.
Why does your result generalize to arbitrary 3-blades?)

Answer: The reflection in the B-plane, characterized by a = B∗, would be
x 7→ x− 2(x ·a)a−1. Obviously, under this reflection, a becomes −a, but any
vector in B is perpendicular to a and remains unchanged. Therefore a 3-blade
a ∧ B becomes −a ∧ B. Since all 3-blades are proportional to each other in
3D, and the reflection is linear, all 3-blades change to minus themselves.

3. You may want to apply a linear mapping f to a k-dimensional subspace. You
could then be tempted to use (4.7) with its pseudoscalar Ik substituted for
In, to define what the determinant of f is on this subspace. Why doesn’t this
work?

Answer: The linear mapping may not have its results purely in the sub-
space Ik, and then the division does not produce a scalar that can be used as
determinant.

5. Design a non-trivial linear map f : R2 → R2 which has an eigenvector and an
eigen-2-blade, both with eigenvalue 1.

Answer: On a not necessarily orthonormal basis, define the map by f[e1] =
e1 and f[e2] = e2.

7. To continue with the previous problem after you know about the adjoint in
Section 4.3.2, rewrite the correct expression for the squared norm of f[A] in
the form A ∗ g[A], and determine g in terms of f. This is the metric mapping
corresponding to the transformation f, and it shows that the transformed
space can be treated as a space with a new inner product a · b ≡ a ∗ g[b].

Answer: The true squared norm is f[A]∗ f[A]
∼

= f[A]∗ f[Ã] = A∗ f[f[Ã]] =

(f ◦ f)[Ã], involving the composition of the linear transformations f and f,
which we write compactly as ff. As the exercise is phrased, the mapping g is

11
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thus ff preceded (or followed) by a reversion. It is actually more common to

define g through the squared norm being A ∗ g[Ã]. Then g = ff.

9. Show that in a space Rn with arbitrary basis {bi}ni=1, the adjoint of a linear
transformation f can be constructed as

f[x] =

n∑

i=1

(x ∗ f[bi])bi. (4.19)

Answer: We need to show that this is the adjoint, by showing that it satisfies
the implicit definition (4.10). We use linearity a few times:

f[x] ∗ a =

n∑

i=1

(x ∗ f[bi]) (bi ∗ a)

= x ∗
(∑

i

f[bi] (bi ∗ a)
)

= x ∗ f[
∑

i

bi (bi ∗ a)]

= x ∗ f[a],

where the last transition recognizes that the sum is just the expansion of a
on a complete basis for Rn. So f as defined has the fundamental property
(4.10).

11. Give an expression for f[AcB]. Hint: consider the symmetry of (4.10).

Answer: f[AcB] = f−1[A]cf[B].

13. For the shear x 7→ fs[x] ≡ x+ s (x · e1) e1 (on the standard orthonormal basis
of Rn,0) compute the transformation matrix [[fs]] (to act on vectors). Also
compute the matrix [[f∗s ]]. Verify the results in a picture of the shear of a
planar line and its normal vector.

Answer: Erratum:This is non-uniform scaling rather than shear, which
would be x 7→ fs[x] ≡ x + s (x · e2) e1. Let us treat both.
To compute the matrix for f, element (i, j) is made as eicf[ej ]. That gives the

following matrix: [[f]] =

[[
1 + s 0

0 1

]]
. For instance, the (1,1) entry is

e1cf[e1] = e1c((1 + s)e1) = e1.

For f∗, we have to compute things like

e1cf∗[e1] = e1c(f[e1−∗]
∗
)

= e1c(f[e1c(e1 ∧ e2)]c(e2 ∧ e1))

= e1c(f[e2]c(e2 ∧ e1))

= e1c(e2c(e2 ∧ e1))

= e1ce1) = 1.

This yields the matrix [[f∗]] =

[[
1 0
0 1 + s

]]
, and the mapping x 7→ x + s(x ·

e2)e2.

For a line through the origin with direction vector u we get the result f[u] =
u+s(u ·e1) e1, and for its normal vector we would get f∗[n] = u+s(u ·e2) e2.
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Since u ·n = 0, we find f[u] · f∗[n] = u ·n+s(u ·e1) (e1 ·n)+s(n ·e2) (e2 ·u) =
(1 + s)u · n = 0. So indeed the normal vector transforms correctly by f∗.

Had we taken the actual shear g[x] ≡ x + s (x · e2) e1, we would find g∗[x] ≡

x − s (x · e1) e2, [[g]] =

[[
1 s
0 1

]]
and [[g∗]] =

[[
1 0
−s 1

]]
. Again, line u and

normal n remain orthogonal: g[u] · g∗[n] = u · n + s (u · e2) (e1 · n) − s (u ·
e2) (e1 · n) = u · n = 0.

15. The classical closed-form formula for the inverse of a matrix [[A]] is

[[A]]−1 =
adj([[A]])

det([[A]])
, (4.20)

where adj([[A]]) is the classical ‘adjoint matrix’, of which the (i, j)th element
equals (−1)i+j det([[Aji]]), with [[Aji]] a ‘minor matrix’ obtained from [[A]] by
omitting the j-th row and the i-th column. Show that this terrific coordinate-
based construction is identical to the coordinate-free formula (4.16). Equa-
tion (4.20) is very hard to compute with algebraically, though we will say that
it is easy to implement. (Though in practice, one implements matrix inversion
by Gaussian elimination, so that eq.(??) is usually treated as little more than
a mathematical curiosity, neither good for derivation nor for implementation.)

Answer: Comparison of this formula with our inverse in (4.16) shows that
we should be able to demonstrate

adj([[A]])[[x]] = [[A[x∗]
−∗

]].

It is a pain to do this symbolically, leading to a swamp of indices. Rather, let
us give how it works in 3D. In that case

[[A]] =





a11 a12 a13
a21 a22 a23
a31 a32 a33




 ,

and the (2,1)-entry of adj([[A]]) is then minus the determinant of the matrix
without the first row and second column (note the transposition involved!),
which yields a31a23 − a21a33. The same element would be computed in geo-
metric algebra as the e1-component of the transformation on e2, which is

e1cA[e2
∗]
−∗

= e1cA[e2c(e3 ∧ e2 ∧ e1)]
−∗

= e1cA[e1 ∧ e3]
−∗

= e1c(A[e1] ∧ A[e3])
−∗

=
(
e1 ∧ A[e1] ∧ A[e3]

)−∗

=
(
e1 ∧ (a11e1 + a21e2 + a31e3) ∧ (a13e1 + a23e2 + a33e3)

)−∗

=
(
e1 ∧ (a21a33 − a31a23) e2 ∧ e3

)−∗

= (a21a33 − a31a23)(e1 ∧ e2 ∧ e3)c(e1 ∧ e2 ∧ e3)

= a31a23 − a21a33.

So the answer is the same. You see how the presence of the e2 in this example
effectively performs the elimination of the second column through its outer
product; and how the fact that we contraction with e1 selects all but the first
row. The antisymmetry of the outer product takes care of all the signs. That
pattern generalizes in a straightforward manner. By the way, what we called
the ‘minor matrix’ is also known as the ‘cofactor matrix’.
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17. In standard linear algebra, one way to encode a subspace is as the image of
a matrix. The subspace spanned by the basis {b1, · · · ,bk} is then the image
of the matrix [[B]] = [[b1 · · ·bk]]. The orthogonal projection of a vector x onto
this subspace im[[B]] is computed using the projection matrix as the vector

[[B]]([[B]]T [[B]])−1[[B]]T [[x]].

Show that this is in fact the same mapping as our (xcB)cB−1 of (3.25). How
would you describe the extension as an outermorphism in standard linear
algebra?

Answer: We rewrite the geometric algebra expression slightly differently to
make it more recognizable. Let k be the grade of B. We develop using (3.16),
and then using (3.31) we get:

(xcB)cB−1 =
( k∑

i=1

(−1)i−1b1 ∧ · · · ∧ (xcbi) ∧ · · ·bk
)
cB−1

=
( k∑

i=1

(x · bi) (−1)i−1b1 ∧ · · · ∧ b̆i ∧ · · ·bk
)
cB−1

=

k∑

i=1

(xcbi)bi.

So the projection is just a composition of x using the vectors in B; it uses the
reciprocal frame since those vectors need not be orthonormal.

The matrix expression [[B]]([[B]]T [[B]])−1[[B]]T [[x]] contains the inner product
of the vectors of B with x in its last term [[B]]T [[x]]. The two expressions are
therefore equivalent if the first part defines the matrix [[B′]] of the reciprocal
frame [[b1 b2 · · ·bk]]. That demand is equivalent to wanting [[B]]T [[B′]] to be
the identity, since bi · bj = δji . And indeed it is:

[[B]]T [[B′]] = [[B]]T [[B]] ([[B]]T [[B]])−1 =
(
[[B]]T [[B]]

)
([[B]]T [[B]])−1 == [[1]]k×k.

Therefore the two expressions are identical.

It is instructive to work this out for k = 2; a large number of terms appears in
both approaches, constructed in different manners, but ultimately identical.
First let us compute the geometric algebra expression:

(xc(b1 ∧ b2))c(b1 ∧ b2)−1 =

=

(
(x · b1)b2 − (x · b2)b1

)
c(b2 ∧ b1)

(b1 ∧ b2) ∗ (b2 ∧ b1)

=

(
(x · b1) (b2 · b2)− (x · b2)(b1 · b2)

)
b1 +

(
− (x · b1) (b2 · b1) + (x · b2)(b1 · b1)

)
b2

(b2 · b2)(b1 · b1)− (b1 · b2)2

Now work out the matrix expression. The hardest part there is the inverse:

([[B]]
T

[[B]])−1 =
([[b1

T

b2
T

]] [[
b1 b2

]] )−1

=

[[
b1 · b1 b1 · b2

b1 · b2 b2 · b2

]]−1

=

[[
b2 · b2 −b1 · b2

−b1 · b2 b1 · b1

]]
/
(
(b2 · b2)(b1 · b1)− (b1 · b2)2

)
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Multiplying by [[B]] on the left then gives what our reasoning exposed as the
reciprocal frame matrix:

[[B′]] =

[[
(b2 · b2)b1 − (b1 · b2)b2

(b2 · b2)(b1 · b1)− (b1 · b2)2
−(b1 · b2)b1 + (b1 · b1)b2

(b2 · b2)(b1 · b1)− (b1 · b2)2

]]
,

and subsequent right multiplication by [[B]][[x]] indeed yields the above result,
showing equivalence in this grade-2 case.

By the way, note that the determinant computation required for the matrix
inverse det([[B]]T [[B]]) is precisely the quantity ‖B‖ = B ∗ B̃ required in the
inverse of the blade B. In fact, it matches the definition of the scalar product
(3.2) literally.

As to the second part of the question, extending to an outermorphism would
allow the projection matrix to be applied to a subspace X spanned by vec-
tors x1, · · · ,xm. Such a subspace would be encoded by the matrix [[X]] =
[[x1 · · ·xm]], and the projection matrix can be applied to that immediately,
to produce the transformed subspace matrix. Some care is required, though:
since we are doing a projection, the result may be in a smaller-dimensional
subspace, so the columns of the result are possibly dependent. If one wants a
minimal representation, dependent columns need to be eliminated, in a proce-
dure that makes the total operation non-linear. The geometric algebra result
in such a case would be zero (for instance, projecting a 3-blade to a 2-blade).
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Chapter 5

Intersection and Union of
Subspaces

5.10 Exercises

5.10.1 Drills

Compute join A ∪B and meet A ∩B for the following blades:

1. A = e1 and B = e2.

Worked answer: The join will be proportional to the pseudo-scalar I2 =
e1 ∧ e2. So letting A ∪B = e1 ∧ e2 we have

A ∩B = (BcI−12 )cA
= (e2c(e2 ∧ e1))ce1
=

(
(e2ce2) ∧ e1 + (−1)1e2 ∧ (e2ce1)

)
ce1

= (1 ∧ e1 + 0)ce1
= 1.

2. A = e2 and B = e1.

Answer: Again the join can be e1 ∧ e2. Now compute the meet as (e1c(e2 ∧
e1))ce2 = −e1ce1 = −1.

3. A = e1 and B = 2e1.

Answer: The join can be e1. Now compute the meet as (2e1ce1)ce1 = 2e1.

4. A = e1 and B = (e1 + e2)/
√

2.

Answer: The join can be e1 ∧ e2. Now compute the meet as

((e1 + e2)c(e2 ∧ e1))ce1/
√

2 = 1/
√

2.

5. A = e1 and B = cosφ e1 + sinφ e2.

Answer: join is e1 ∧ e2, meet is sinφ.

6. A = e1 ∧ e2 and B = cosφ e1 + sinφ e2.

Answer: join is A, meet is B.

7. A = e1 ∧ e2 and B = e2.

Answer: join is e1 ∧ e2, meet is e2.

17
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8. A = e1 ∧ e2 and B = e2 + 0.00001 e3.

Answer: join is e1 ∧ e2 ∧ e3, meet is 0.00001. A small change compared to
the previous drill leads to a large difference in outcome!

5.10.2 Structural Exercises

1. There is an interesting reciprocal relationship between A, B, J and M.

(BcJ−1) ∗ (AbM−1) = 1

Verify the steps in the following proof: 1 = M−1∗M = M−1∗((BcJ−1)cA) =
(M−1 ∧ (BcJ−1)) ∗A = (BcJ−1) ∗ (AbM−1). Then prove in similar manner:

(M−1cB) ∗ (J−1bA) = 1

Answer:

1 = M−1 ∗M
= M−1 ∗ ((BcJ−1)cA) (5.6)

= (M−1 ∧ (BcJ−1)) ∗A (3.6)

= (BcJ−1) ∗ (AbM−1) (3.18)

1 = J−1 ∗ J = J−1 ∗ (A ∧ (M−1cB)) = (J−1bA) ∗ (M−1cB).

3. Compute meet and join of two vectors a and b in general position, and show
that the magnitude (relative to their join) is the sine of their angle. Relate
the sign of the sine to the order of intersection. In this case the meet should
be anti-symmetric.

Answer: Let a = e1 and b = cos(θ)e1 + sin(θ)e2, where θ is the angle from
a to b. Let J = e1 ∧ e2. Then J−1 = −e1 ∧ e2 and

a ∩ b = (bcJ−1)ca
= −((cos(θ)e1 + sin(θ)e2)c(e1 ∧ e2))ce1
= −(cos(θ)e1c(e1 ∧ e2))ce1 − (sin(θ)e2c(e1 ∧ e2))ce1
= − cos(θ)((e1ce1) ∧ e2 − e1 ∧ (e1ce2))ce1
− sin(θ)((e2ce1) ∧ e2 − e1 ∧ (e2ce2))ce1

= (sin(θ)e1 − cos(θ)e2)ce1
= sin(θ)

Since the answer is the sine of the angle θ between a and b, it changes sign
when we swap them. This is more clearly visible when we dare to use a more
symbolic computation. We know that the join is the common plane I, so b∗

is a vector; then use symmetry of the inner product, and duality:

a ∩ b = b∗ · a = a · b∗ = (a ∧ b)
∗
.

The weight of the bivector a ∧ b relative to the unit pseudoscalar of the
plane is ‖a‖ ‖b‖ sin(θ) (by (2.14)), so the result follows for the unit vectors.
Antisymmetry of the meet is now obvious from the antisymmetry of a ∧ b.

5. As an exercise in symbolic manipulation of the products so far, let us consider
the meet of a ∧ B and a ∧ C, where a is a vector and the blades B and C
have no common factor. The answer should obviously be proportional to a,
but what precisely is the proportionality factor? (Hint: If you get stuck, the
next exercise derives the answer as (a ∧B ∧C)

∗
.)
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7. Use the previous derivation to derive the general factorization of the meet:

(A ∧B) ∩ (A ∧C) = A (A ∧B ∧C)
∗
, (5.11)

where A, B and C have no common factors.

Answer: The derivation follows the same pattern. Note that the final result
is a multiple of A, since (A ∧B ∧C)

∗
is just the scalar weight of the common

span relative to the unit pseudoscalar of the join.



20 FINAL — October 28, 2010



Chapter 6

The Fundamental Product of
Geometric Algebra

6.7 Exercises

6.7.1 Drills

1. Let a = e1 + e2 and b = e2 + e3 in a 3-dimensional Euclidean space with
orthonormal basis {e1, e2, e3}. Compute the following expressions, giving the
results relative to the basis {1, e1, e2, e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2, e1 ∧ e2 ∧ e3}.
Show your work.

(a) aa
Worked answer:

a a = aca + a ∧ a

= (e1 + e2)c(e1 + e2)

= e1ce1 + e1ce2 + e2ce1 + e2ce2
= 1 + 0 + 0 + 1 = 2

or alternatively

aa = (e1 + e2) (e1 + e2)

= (e1 e1) + (e1 e2) + (e2 e1) + (e2 e2)

= (e1 e1) + 2(e1 · e2) + (e2 e2)

= 1 + 0 + 1 = 2

Answer: 2

(b) ab

Answer: 1 + e2 ∧ e3 − e3 ∧ e1 + e1 ∧ e2

(c) ba

Answer: 1− e2 ∧ e3 + e3 ∧ e1 − e1 ∧ e2

(d) (e1 ∧ e2)a
Worked answer:

(e1 ∧ e2)a = (e1 ∧ e2) (e1 + e2)

= (e1 ∧ e2) e1 + (e1 ∧ e2) e2

21
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= (e1 e2) e1 + (e1 e2) e2

= (−e2 e1) e1 + (e1 e2) e2

= −e2 (e1 e1) + e1 (e2 e2)

= −e2 + e1

From now on, you should be able to do such computations as one-liners,
using anticommutativity and associativity without spelling them out,
just swapping indices to bring terms together, and keeping track of the
signs:

(e1 ∧ e2) (e1 + e2) = e12 e1 + e12 e2 = −e21 e1 + e1 = −e2 + e1

(e) a (e1 ∧ e2)

Answer: −e1 + e2

(f) (e1 ∧ e2 ∧ e3)a

Answer: e2 ∧ e3 + e3 ∧ e1

(g) a−1

Answer: 1
2 (e1 + e2)

(h) ba−1

Answer: 1
2 (1− e23 + e31 − e12)

(i) (e1 ∧ e2)−1

Answer: −e1 ∧ e2

2. Make a full geometric product multiplication table for the 8 basis elements
{1, e1, e2, e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2, e1 ∧ e2 ∧ e3}; (a) in a Euclidean metric
R3,0 and (b) in a metric R2,1 with e1 · e1 = −1.

Answer:

1 e1 e2 e3 e23 e31 e12 e123

1 1 e1 e2 e3 e23 e31 e12 e123
e1 e1 1 e12 −e31 e123 −e3 e2 e23
e2 e2 −e12 1 e23 e3 e123 −e1 e31
e3 e3 e31 −e23 1 −e2 e1 e123 e12
e23 e23 e123 −e3 e2 −1 −e12 e31 −e1
e31 e31 e3 e123 −e1 e12 −1 −e23 −e2
e12 e12 −e2 e1 e123 −e31 e23 −1 −e3
e123 e123 e23 e31 e12 −e1 −e2 −e3 −1

1 e1 e2 e3 e23 e31 e12 e123

1 1 e1 e2 e3 e23 e31 e12 e123
e1 e1 −1 e12 −e31 e123 e3 −e2 −e23
e2 e2 −e12 1 e23 e3 e123 −e1 e31
e3 e3 e31 −e23 1 −e2 e1 e123 e12
e23 e23 e123 −e3 e2 −1 −e12 e31 −e1
e31 e31 −e3 e123 −e1 e12 1 e23 e2
e12 e12 e2 e1 e123 −e31 −e23 1 e3
e123 e123 −e23 e31 e12 −e1 e2 e3 1

6.7.2 Structural Exercises

1. Section 6.1.1 demonstrated the non-invertibility of contraction and outer prod-
uct. Show by a geometrical example that the cross product of two vectors is
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not invertible either. Also give an algebraic argument based on its (invertible)
relationship to the outer product.

Answer: x × a has the same value as (x + λa) × a, since the cross product
is anti-symmetric. And of course the cross product is related to the outer
product by x × a = (x ∧ a)

∗
. This relationship is invertible, so any proper-

ties of the outer product are similar to those of the cross product, including
invertibility.

3. The outer product can be defined as the completely anti-symmetric summed
average of all permutations of geometric products of its factors, with a sign
for each term depending on oddness or evenness of the permutation. For the
3-blade, this means:

x ∧ y ∧ z =
1

3!
(xy z− y xz + y zx− zy x + zxy − xzy)

Derive this formula.

Answer: You might try x ∧ y ∧ z = 1
2 x ∧ (y z − zy) = 1

4 (xy z − xzy −
y zx + zy x). Also true, but not what was asked. Make the starting point
more symmetrical by writing x∧y∧ z = 1

6 (x∧y∧ z−y∧x∧ z+y∧ z∧x−
z∧ y ∧ x+ z∧ x∧ y− x∧ z∧ y), then perform the same trick. Terms should
now group and cancel, to produce the result.

5. Show that the definition of the scalar product as A∗B = 〈AB〉0 is equivalent
to the determinant definition of (3.2). You will then also understand why the
matrix in the latter definition has the apparently reversed ai ·bk−j as element
(i, j) for k-blades.

Answer: To prevent a difficult administrative notation, we just show the
pattern of the Laplace expansion of a determinant appearing:

〈AB〉0 = 〈(a1 ∧ · · · ∧ ak) (b1 ∧ · · · ∧ bk)〉0
= (a1 ∧ · · · ∧ ak)c(b1 ∧ · · · ∧ bk)

= (ak · b1) (a1 ∧ · · · ∧ ak−1)c(b2 ∧ · · · ∧ bk)

−(ak · b2) (a1 ∧ · · · ∧ ak−1)c(b1 ∧ b3 ∧ · · · ∧ bk)

+(ak · b3) (a1 ∧ · · · ∧ ak−1)c(b1 ∧ · · · b̆3 · · · ∧ bk)

− · · ·
+(−1)k−1(ak · bk) (a1 ∧ · · · ∧ ak−1)c(b1 ∧ · · · ∧ bk−1)

The smaller contractions can be expanded again, and the familiar anti-symmetric
pattern of the determinant appears. It is clear why ak combines with b1 for
the first positive term: in the geometric product they are right next to each
other. So in writing the scalar product as a determinant of a matrix, a1 · bk
can be chosen as the (1,1)-element, and the rest follows from the patterns.

7. In the formula (xcA−1)A, we can replace the geometric product by a con-
traction, so that it is in fact the projection (xcA−1)cA. Show this, using the
suggestion that xcA−1 might be a sub-blade of A — which you first need
to demonstrate. After that, decompose xcA−1 as a product of orthogonal
vectors, and evaluate the two formulas.

Answer: First, xcA−1 differs only by the scalar 1/‖A‖2 from xcA, so it is
definitely contained in A and is a blade. Now perform an orthogonal fac-
torization of the blade xcA−1 as ak−1 · · ·a2 ak, where all the factors are or-
thogonal, and use the same factorization for A, with one more factor ak,
so that A = a1 a2 · · ·ak. Now using these factorizations, compute both
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(xcA−1)cA and (xcA−1)A. Due to orthogonality of the factors, you find
(a1 ·a1) · · · (ak−1 ·ak−1)ak and a21 · · ·a2k−1 ak, respectively. Those are of course
identical.

9. In a 4-dimensional space with orthonormal basis {ei}4i=1, project the 2-blade
X = (e1 + e2) ∧ (e3 + e4) onto the 2-blade A = (e1 ∧ e3). Then determine
the rejection as the difference of X and its projection. Show that this is not
a blade. (See also structural exercise ?? of Chapter 2.)

Answer: Writing X out in the basis 2-blades, it is X = e13 +e23 +e24 +e14.
The projection onto e13 is simply computed as e13. The multivector Y ≡
X− e13 = e23 + e24 + e14 has no vectors, for when you try to solve x∧Y = 0
for the coefficients ξi of x, only ξ1 = ξ2 = ξ3 = ξ4 = 0 results. Therefore Y is
not a blade.



Chapter 7

Orthogonal Transformations
as Versors

7.10 Exercises

7.10.1 Drills

1. Compute R1 ≡ Re1∧e2 π/2, and apply to e1

Answer: Check our notation, the subscript gives Iφ but the rotor should be
computed as exp(−Iφ/2). We get R1 = (1− e1e2)/

√
2, and

R1e1R̃1 = 1
2 (1− e1e2) e1(1 + e1e2)

= 1
2 (e1 − e1e2e1 + e1e1e2 − e1e2e1e1e2)

= 1
2 (e1 + 2e21e2 − e1e

2
1e

2
2) = e2.

2. Compute R2 ≡ exp(e3 ∧ e1 π/4), and apply to e2 ∧ e4

Answer: R2 = (1 + e3e1)/
√

2, and R2(e1e4)R̃2 = (e1e4)R2R̃2 = e1e4 is
invariant, since it commutes with the rotor.

3. Compute R2R1, and apply to e1 ∧ e2.

Answer: R2R1 = 1
2 (1−e1e2+e2e3+e3e1). This turns e1∧e2 into −e2∧e3.

4. Compute the axis and angle of R2R1.

Answer: We have R2R1 = 1
2 (1−e1e2+e2e3+e3e1) 1

2 + 1
2

√
3 (−e1e2+e2e3+

e3e1)/
√

3. Comparing to cos(φ/2) − I sin(φ/2) = cos(φ/2) + aI−13 sin(φ/2),
we read off that cos(φ/2) = 1

2 , sin(φ/2) = 1
2

√
3, so that φ = 2π/3, and

a = (−e1e2 + e2e3 + e3e1)/
√

3 I3 = (e3 − e1 − e2)/
√

3.

5. Compute the product of the rotors Re14π/2 and Re23π/2, and apply to e12.

Answer: Ambiguously formulated. Let us take the reading order as the
order of performing them (so that the total rotor is R2R1), then R1 = (1 −
e1e4)/

√
2 and R2 = (1−e2e3)/

√
2 and R2R1 = 1

2 (1−e2 e3−e1e4+e1e2e3e4).
Applying this to e12 yields −e34.

6. Reflect (e1 + e2) ∧ e3 in the plane e1 ∧ e4.

Answer: (−1)2(2+1)e1e4((e1 + e2)e3)e4e1 = (−e1 + e2) ∧ e3.

7. Reflect the dual plane reflector e1 in the plane e1 ∧ e3.

Answer: (−1)1(2+1)e1e3e1e3e1 = e1, it is invariant.

25
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7.10.2 Structural Exercises

1. The generalization of the line reflection from axa−1 to aXa−1 seems straight-
forward when we remember that a k-blade can be written as the geometric
product of k mutually orthogonal vectors: X = x1 x2 · · ·xk, and then simply
compute the outermorphism as: (ax1a

−1) (ax2a
−1) · · · (axka−1) = aXa−1.

The result is correct but the proof is wrong as it stands. Why? (Hint: Can
you guarantee the factorization after reflection?)

3. Verify that a line reflection in 3-D can be performed as a rotation. Which
rotation? Give the axis and angle. Verify that this reflection can be applied
to any blade.

Answer: The formula axa−1 can be written in terms of a 2-blade as ver-
sor using x I3 = I3 x. Then axa−1 = a I−13 I3 xa−1 = a I−13 x I3 a

−1 =
(a I−13 )x (a I3)−1. Let us take a as unit vector, then this is the correct for-
mula for a rotation, with versor a I−13 = a−∗ = exp(a−∗π/2). The rotation
axis is a, the rotation angle is π. Since the formula is in versor form, it extends
in a structure preserving manner to all elements.

5. Show from the definition of the adjoint (in Section 4.3.2) that the adjoint of
a transformation that can be written as a versor product with a versor V is
a versor product with the versor V −1. Relate this to the orthogonality of a
versor-based transformation.

Answer: (V xV −1) ∗ y = 〈V xV −1 y〉0 = 〈xV −1 y V 〉0 = x ∗ (V −1 y V ),
so the adjoint is characterized by V . For an orthogonal transformation like
versor sandwiching, the adjoint should indeed equal the inverse.

7. Match the computation of the composition of 2-D rotations in Section 7.3.1
to that of the 3-D rotations in Section 7.3.3, both algebraically and in the
geometric visualization.

Answer: In (7.9), if I2 = I1 = I then I2 I1 = −1. Therefore s⊥ = 0, c⊥ = 1,
and the formula would read:

c′t−Its′t = (c′1c
′
2+s′1s

′
2)−(c′2s

′
1+c′1s

′
2) I = cos((φ1+φ2)/2)−sin((φ1+φ2)/2)I,

which agrees with the 2D case. In the spherical image, everything takes place
in one plane, and the spherical arc addition smoothly becomes circular arc
addition.

9. Draw the rotated rotor R2R1 R̃2 as an arc in the spherical image. Hint: what
would you expect it to be, based on its geometric meaning? Warning: it is
not simply the R1 arc rotated over the R2-arc!

Answer: In the end, locally in the rotation sphere, if you have R1 and R2

as directed arc arrows starting at a common origin, the directed arc arrow for
R2R1R̃2 is ‘locally parallel’ to that of R1, starting at the point 2R2 −R1.

R1

R2

R2 R1 R̃2
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11. Derive the formulas for the reflection of a dual blade Y = X∗ from the formu-
las for reflection of a directly represented blade X. So, derive the last column
of Table 7.1 from the column before. Make sure you take the dual of both
input and output relative to the same unreflected pseudoscalar In. The table
entry for row A and column Y is wrong in the first edition of the book. This
exercise will help you correct it!

Answer: The direct formula (−1)x(a+1)AXA−1 needs to be dualized. For
the grades, y = n− x. This gives

(−1)x(a+1)AXA−1I−1n = (−1)x(a+1)(−1)a(n+1)AXI−1n A−1

= (−1)(n−y)(a+1)+a(n−1)AYA−1

= (−1)(y+1)(a+1)+n−1AYA−1.

13. You can project onto a rotor, and get a geometrically meaningful result. Give
the geometric interpretation of the projection PR[x] ≡ (xcR)R−1. (Hint:
think ‘chord’.) For rotors, it matters whether you put the inverse on the first
or the last factor: what is (xcR−1)R?

Answer: Expand as 1
2 (x − Rx R̃). This is half the chord from R[x] to x.

The other possibility involves a chord from the opposite rotation to x.

15. Bonus question! Naive geometric intuition suggests that one could test
whether a blade X is contained in a blade A by verifying that the reflection of
X in A is identical to X. However, this is wrong: a counterexample is provided
by X = e1 e2 and A = e3 e4. Describe the geometry of this situation. The
test cannot be fixed by demanding that X and A have at least one common
factor, so that X ∧A = 0. Design a counterexample for that.

A correct test for containment can be constructed by embedding both blades
in a Euclidean metric (this avoids problems with null blades). Then X⊆A if
and only if X ∧ (XcA) 6= 0.

Answer: (e3e4)(e1e2)(e4e3) = (e1e2), so the reflection is equal to the
original, but the two blades are X = e1e2e3e4 and A = e1e2e5e6.
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Chapter 8

Geometric Differentiation

8.9 Exercises

8.9.1 Drills

1. Compute the radius of the tangent circle for the circular motion r(τ) =
exp(−Iτ) e1 in the plane I = e1 ∧ e2, at the general location r(τ).

Answer: That radius is of course 1, but it is interesting to follow the com-
putation using the procedure on page 223. We compute the various elements
– you should draw them, to see how the differentiation changes the directions
of the various derivatives.

r(τ) = exp(−Iτ) e1

ṙ(τ) = exp(−Iτ) (−I) e1 = exp(−Iτ) (−e1 e2 e1) = exp(−Iτ) e2

r̈(τ) = exp(−Iτ) (−I) e2 = exp(−Iτ) (−e1)

Then

ρ2 =
( ṙ3

ṙ ∧ r̈

)2

=
(exp(−Iτ) e2 exp(−Iτ) e2 exp(−Iτ) e2

(exp(−Iτ) e2) ∧ (exp(−Iτ) (−e1))

)2

=
(exp(−Iτ) e32

e2 ∧ (−e1)

)2

=
(

exp(−Iτ) (e2 (−e1 ∧ e2)
)2

=
(

exp(−Iτ) e1)
)2

= exp(−Iτ) e1 exp(−Iτ) e1 = e1 exp(Iτ) exp(−Iτ) e1 = e1 e1 = 1

2. Compute the following derivatives.

(a) (a ∗ ∂x)x3

Answer: ¿From first principles or by Table 8.1:

(a ∗ ∂x)x3 = 2ax2 + xax = 2 (a · x)x + ax2.

(b) ∂x x
3

Answer: The answer is (m + 2)x2, which should look familiar for the
1-dimensional case m = 1, as essentially scalar calculus. We can derive
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this result per coordinate of ∂x using the previous result:

∂x x
3 =

∑

i

ei (ei ∗ ∂x)x3 =
∑

i

ei (2(ei · x)x + ei x
2)

= 2
∑

i

ei (ei · x)x +
∑

i

ei ei x
2

= 2x2 +
(∑

i

ei · ei +
∑

i

ei ∧ ei
)
x2 = 2x2 +mx2 + 0 by (3.35).

A better derivation is to use the product rule and Table 8.1, since that
is a coordinate-free method:

∂x x
3 = ∂̀x x̀ x2 + ∂̀x x x̀ x + ∂̀x x

2 x̀

= 2∂̀x x̀ x2 + ∂̀x (2x̀ · x− x̀ x)x

= ∂̀x x̀ x2 + 2∂̀x (x̀ · x)x

= (m+ 2)x2.

(c) (a ∗ ∂x) (xb/x)

Answer: ¿From first principles or by Table 8.1 and the product rule:

ab/x+xb (−x−1 ax−1) = x (x−1 ab−bx−1 a)/x = 2x
(
bc(x−1 a)

)
/x

The answer is geometrically encompassing. For instance, if a is parallel
to x, the derivative is zero, confirming the expectation that such longitu-
dinal changes in x do not affect the result of xb/x. Contrast the result
with that of (a ∗ ∂x) (bx/b) given in Table 8.1.

(d) ∂x (xb/x)

Answer:

∂x xbx/‖x‖2 =

= ∂̀x x̀ b x/‖x‖2 + ∂̀x xb x̀/‖x‖2 + ∂̀x xbx/‖x̀‖2

= ∂̀x x̀ b x/‖x‖2 + ∂̀x
(
2(x̀ · b)x− 2(x̀ · x)b + x̀ x b)/‖x‖2 + ∂̀x‖x̀‖−2 xbx

= mbx−1 + (2bx−1 − 2x−1 b +mx−1 b)− 2bx−1

= mbx−1 + (m− 2)x−1 b = 2(m− 1)x−1 · b− 2x−1 ∧ b.

(e) x̀ ∂̀x

Answer:
∑
i eix

i
∑
j e

j ∂
∂xj =

∑
i eie

i =
∑
i ei · ei +

∑
i ei ∧ ei =∑

i 1 + 0 = m, using (3.35).

(f) x̀ ∧ ∂̀x
Answer: (

∑
i eix

i) ∧ (
∑
j e

j ∂
∂xj ) =

∑
i ei ∧ ei = 0 by (3.35).

(g) x̀ · ∂̀x.

Answer: (
∑
i eix

i) · (
∑
j e

j ∂
∂xj ) =

∑
i ei · ei =

∑
i 1 = m.

3. Show that the coordinate vectors are related to differentiation through ek =
∂
∂xkx.

Answer: ∂
∂xkx = ∂

∂xk

∑
i x

iei = δikei = ek.

4. Show that the reciprocal frame vectors are the gradients of coordinate func-
tions: ek = ∂x x

k

Answer: ∂xx
k =

∑
i e
i ∂
∂xix

k =
∑
i e
iδki = ek
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8.9.2 Structural Exercises

1. Prove the Jacobi identity (8.2) and relate it to non-associativity of the bivec-
tor algebra.

Answer: The proof is a straightforward matter of writing out the various
terms and canceling algebraically. The non-associativity was already indi-
cated the bottom equation on page 215, which shows to what measure that
(A xB) xC deviates from A x (B × C).

3. The Baker-Campbell-Hausdorff formula writes the product of two exponentials
as a third, and gives a series expansion of its value:

eC = eA eB

with
C = A+B +A xB + 1

3 (A x (A xB) +B x (B xA)) + · · · .

Show that these first terms of the series are correct. This formula again shows
the importance of the commutator A xB in quantifying the difference with
fully commuting variables. We should warn you that the general terms of the
series are more complicated than the first few suggest.

Answer: This is a straightforward matter of writing out the exponentials in
a Taylor series and collecting terms of similar grades. There is no closed-form
expression for the general term, the problem is discussed in
http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff formula.

5. Justify the following form of Taylor’s expansion formula of a function F around
the location x:

F (x + a) = ea∗∂x F (x),

where you can interpret the exponent in a natural manner as a symbolic
expansion instruction.

Answer: This is a rather administrative exercise:

ea∗∂x F (x) = F (x) + (a ∗ ∂x)F (x) + 1
2! (a ∗ ∂x)(a ∗ ∂x)F (x) + · · ·

= F (x) +
∑

i

ai
∂
∂xiF (x) + 1

2!

∑

i,j

aiaj
∂
∂xi

∂
∂xj F (x) + · · ·

= F (x + a)
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Chapter 11

The Homogeneous Model

11.12 Exercises

11.12.1 Drills

Compute the 2-blades corresponding to the lines gives by the data below. Which of
the lines are the same, considered as weighted oriented elements of geometry, which
are the same as offset subspaces?

1. Two points at locations e1 and e2.

Answer: (e0 + e1) ∧ (e0 + e2) = (e0 + e1) ∧ (e2 − e1).

2. A point at location e1 and a direction (e2 − e1).

Answer: (e0 + e1) ∧ (e2 − e1), same as (1) in both meanings.

3. A point at location e2 and a direction (e2 − e1).

Answer: (e0 + e2) ∧ (e2 − e1) = (e0 + e2 − (e2 − e1)) ∧ (e2 − e1) =
(e0 + e1) ∧ (e2 − e1), same as (1) in both meanings.

4. Two points with locations 2(e2 − e1) and 3(e2 − e1).

Answer: (e0 + 2(e2− e1))∧ (e0 ∧ 3(e2− e1)) = e0 ∧ (e2− e1), different from
(1) in both meanings.

5. A point at location e1 and a direction 2(e2 − e1).

Answer: (e0 + e1) ∧ (2(e2 − e1)) = 2(e0 + e1) ∧ (e2 − e1) same subspace as
(1), but a different weight.

6. A unit point at location e1 and a point with weight 2 at location e2.

Answer: (e0 + e1) ∧ 2(e0 + e2) = 2(e0 + e1) ∧ (e2 − e1) same subspace as
(1), but a different weight; same as (5), in both meanings.

11.12.2 Structural Exercises

1. Let an orthonormal coordinate system {ei}3i=1 be given in 3-dimensional
Euclidean space. Compute the support vector of the line with direction
u = e1 + 2e2 − e3, through the point p = e1 − 3e2. What is the distance of
the line to the origin?

Answer: d = (p ∧ u/)u = (11e1 − 8e2 − 5e3)/6, and
√

35/6.
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3. Show that the support vector d of a k-flat is the rejection of the position
vector of an arbitrary point p on it by the k-direction A.

Answer: The support vector is defined through p ∧ A = dA, so that
d = (p ∧A)/A. That is indeed the rejection of p by A, the component of p
perpendicular to A.

5. Three points a, b, c form a plane, and these points can be used to address any
other point x in that plane as a linear combination:

x = αa+ β b+ γc.

Using normalized points, one can do this with an affine combination. The
resulting scalars α, β, γ are called barycentric coordinates (literally, ‘weight-
based’). Compute α, β, γ in terms of the points a, b, c, and express the result
using the relative vectors a = a− c, b = b− c and x = x− c. This should give
you:

α =
x ∧ b

a ∧ b
, β =

x ∧ a

b ∧ a
, γ = 1− x ∧ (b− a)

a ∧ b
. (11.18)

Interpret the result geometrically in terms of areas in the plane (most easily
seen when x is inside the triangle formed by a, b and c). What are the
barycentric coordinates of the center of gravity?

These barycentric coordinates can be used to interpolate any scalar property
φ given at each of the vertices of a triangle to an intermediate φx value at x,
through:

φx = αφa + β φb + γ φc (11.19)

This equation will be used in the ray tracer of Chapter 23.

Answer: α = x∧b∧c
a∧b∧c = x∧b∧c

a∧b∧c = (x∧b) e0
(a∧b) e0 = x∧b

a∧b . This is the area of the

triangle to x ‘across from a’ divided by the area of the total triangle. The
center of gravity is at (1, 1, 1)/3.

Bonus question: Show that the support vector of a plane through three
points p, q, r equals (11.4):

d =
p ∧ q ∧ r

p ∧ q + q ∧ r + r ∧ p
.

Note that this expression is a fully computable in the Euclidean space, yet its
(rather straightforward) derivation belongs more properly to the homogeneous
model.

Answer: To phrase the problem in terms of homogeneous coordinates,
we use the definition p ∧ q ∧ r = d

(
(q − p) ∧ (r − p)

)
. The left hand side is

p∧(q−p)∧(r−p) = p∧(q−p)∧(r−p). The attitude is more symmetrical and
Euclidean than it appears: (q−p)∧(r−p) = (q−p)∧(r−p) = q∧r+r∧p+p∧q.
Now taken the non-e0-part of both sides of the defining equation produces the
expression for d.

7. In the parametric equation for an offset flat (11.5), the vector x determines
the values of the λi uniquely. Compute a formula for λi. (Hint: eliminate
the other λj , with j 6= i, by suitably chosen outer products with aj vectors.
Alternatively, use the idea of a reciprocal basis from Section 3.8.)

Answer: For λ1, we take the outer product with a2 ∧ · · · ∧ ak. This
gives terms of both sides proportional to the pseudoscalar, so division is well-
defined, resulting in:

λ1 =
(x− p) ∧ a2 ∧ · · · ∧ ak

a1 ∧ a2 ∧ · · · ∧ ak
.
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The rest is similar.

9. Construct the dual representation of the midplane between two points p and
q.

Answer: The plane goes through the point at 1
2 (p + q) and has attitude

±(q− p)
?
. So the direct representation is ± 1

2 (p + q) ∧ (q − p)? (note the

Euclidean dual!) and the dual representation is ±
(
1
2 (p+ q) ∧ (q − p)?

)∗ ∝
1
2 (p+ q)c

(
(q − p) e−10

)

11. The meet of two skew lines p∧u and q ∧v can be computed as M∗cL. Verify
the steps in the following derivation of (11.9) using this formula.

(p ∧ u) ∩ (q ∧ v) =
(
(q ∧ v)c(I−13 ∧ e0−1)

)
c(p ∧ u)

=
(
qc(vcI−13 ) ∧ e0−1

)
c(p ∧ u)

=
(
qc(vcI−13 ) ∧ e0−1 + (vcI−13 )

)
c(p ∧ u)

=
(
qc(vcI−13 )

)
cu + (vcI−13 )c(p ∧ u)

= uc
(
qc(vcI−13 )

)
+ (p ∧ u)c(vcI−13 )

= (u ∧ q ∧ v)cI−13 + (p ∧ u ∧ v)cI−13

= ((p− q) ∧ u ∧ v)cI−13

13. In Section 11.7.2, we stated: ‘in a plane with anti-clockwise orientation, the
positive side of the line is on your left when you look along its direction’.
Convince yourself that this statement gives the same positive side indepen-
dent of whether you look at the plane from above or below, so that it is a
truly geometrically invariant definition. That is good, for it would be useless
otherwise.

Answer: Only you can convince yourself.

15. Show explicitly that the determinants of the translation formulas (11.13) and
(11.14) for a flat and for a flat dual both equal 1.

Answer: The determinant is the scaling of the transformation of the pseu-
doscalar, so we need to transform that. This is like the previous exercise. Us-
ing (11.13) we get: Tt[e0 In] = e0 In+t∧(e−10 c(e0 In)) = e0 In+t∧In) = e0 In.
The dual is (e0In)

∗
= 1, and using (11.14) we get T∗t [1] = 1− e−10 ∧ (tc1) = 1.

Alternatively, the dual result is immediate when we realize that any linear
transformation preserves a scalar.

17. There is a way to patch up the homogeneous model so that translation be-
comes representable in a versor-like form, and you may find this used in the
somewhat older literature (such as [4]). It uses a different metric in which
e0 · e0 = 0, and represents a point at location x as 1 + xI4, where I4 = e0I3
is the pseudoscalar of the homogeneous representation space. Show that in
this approach, the element (1 + t I4/2) acts as a translation versor on points.
(Erratum: this is not correct, see bottom of exercise.) Therefore the
translation of points, at least, can be represented as a versor — and with it,
general rigid body motions on points.

However, the representation of the higher grade objects (such as lines and
planes) in such a model is ad hoc, in that various objects are not related
to each other by an outer product-like spanning operation, or a meet-like
product for intersection. As a consequence, the versor form of the translation
is not perfect: some objects should be translated as T X T̃ , others as T X T ,
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whereas one would have hoped that such fundamental operations would be
independent of their argument.

Since the invention of the conformal model of Chapter 13 (which fixes all these
defects by using null vectors in a different manner), this ‘motor algebra’ has
fallen into disuse, and we mention it here only for completeness.

Erratum: This exercise is flawed. Even for the translation of a point x, one
needs to use a non-versor-like sandwiching T xT . Show that.

Answer: Note that the erratum illuminates the statement at the end: scalars
transform differently from points.
The translation element T = 1 + t I4/2 can sandwich a point x = 1 + x I4 to
produce the translated point 1 = (x + t) I4, but we have to be careful about
the signs:

1 + (x + t) I4 = (1 + t I4/2) (1 + x I4) (1 + t I4/2).

No higher terms appear because of the special metric in which I24 = 0. There-
fore a translation is made as T xT . This is not actually a versor product; that
would involve inverse or reverse of T , which are: T−1 = T̃ = 1− t I4. Yet in
the conformal model, a similar trick will work: again the metric makes sure
no higher order terms appear, and moreover the reverse versor is used.

19. You are to draw a sequence of equidistant telegraph poles along a straight
road in a picture showing the landscape seen in a bird’s eye view, with the
horizon 6 cm from the first pole, and the separation between first and second
pole 1 cm (see Figure 11.13. Compute where the third pole should be. Extend
this to computing the location of the k-th pole. (Hint: Compute the cross
ratio of the first two poles to the point at infinity in a ‘straight’ photograph.
Then realize that the cross ratio is a projective invariant.)

Answer: Let us solve this for pole k, numbering the poles from zero. We
compute a cross ratio as in Figure 11.8 for p as pole 0, q as pole 1, r as
pole k and s as the pole at infinity. That cross ratio, as a function of k,
is
(
(1)(∞ − k)

)
/
(
(k − 1)(∞)

)
= 1/(k − 1). (If you are uncomfortable with

∞/∞ = 1, just use the pole numbered googolplex instead.) Since the cross-
ratio is a projective invariant, it should be the same in the picture we draw. If
pole k is drawn as a distance x from pole 0 in the picture, we should therefore
have:

(
(1)(6− x)

)
/
(
(x− 1)(6)

)
= 1/(k− 1). It follows that x = 6k/(k+ 5) is

the location, in centimeters, of pole k. The third pole (k = 2) should therefore
be drawn 5/7 cm further along the line.

21. Redo some of the orthogonal projection examples in the vector space model
of a 3-dimensional Euclidean space using the meet interpretation of (11.17).

Answer: As an example, we can take a line through the origin characterized
by a vector x, and a plane through the origin characterized by a unit bivec-
tor A, in 3D. Then the usual projection formula is (xcA)/A = −(xcA)cA.
According to (11.17), this should be minus the meet of the plane A with
x ∧ A−∗ = −x ∧ a, with a ≡ A∗ the usual normal vector of the plane. So
the result is equal to the meet of the planes A and x ∧ a. That intersec-
tion certainly produces a line with the correct carrier. Do a simple example
A = e1 ∧ e2 (so that a = e3) and x = e1 to see that the magnitude and
orientation are correct as well (if you use the unit pseudoscalar e1 ∧ e2 ∧ e3
as join).



Chapter 12

Applications of the
Homogeneous Model

12.5 Exercises

12.5.1 Structural Exercises

1. Table 12.1 contains the case in which a line {a,m} is extended to a plane by
an additional direction n, to form the plane [a× n : n ·m]. Demonstrate the
correctness of this formula, by representing the spanning L∧n in terms of the
Plücker coordinates.
Erratum: Due to a somewhat unfortunate convention in [57], equation (12.3)
should have an overall minus sign, and the entry {a,m} in Table 12.1 repre-
sents the line with direction −a and moment −m.

Answer: According to (12.4), the line with direction −a and moment −m is
represented by L = −a e0 −mI3 = −a ∧ e0 −mcI3. The plane then is

L ∧ n = −a ∧ e0 ∧ n− (mcI3) ∧ n

= (a ∧ n) e0 − n ∧ (mcI3)

=
(
(a ∧ n)I−13

)
I3 e0 − (n ·m)cI3

= −(a× n) e0 I3 − (n ·m) I3.

Comparison to the direct plane equation on pg. 331 shows that the normal
vector is a× n, and the origin distance −n ·m. The plane is therefore repre-
sented in Plücker coordinates as [a×n,n ·m], in agreement with the entry in
Table 12.1.

3. Knowing some of the standard formulas in geometric algebra, you may recog-
nize that the central projection formula (12.9) is not unlike the usual orthogo-
nal projection formula onto a line with direction a, which maps x to (x·a)a−1.
Demonstrate that we can consider the central projection x′ 7→ x/(f−1 · x) as
the fixed vector f gets inverted, projected onto the variable vector x, and
then re-inverted, to produce x′. This interpretation of the formula general-
izes to substituting x by a line or plane (just replace the inner product by
the contraction): it then produces the support vector of the projected line or
plane.

(Hint: show that the x′ satisfies: x′−1 = (f−1 · x)x−1 = (f−1 · x−1)x. and
interpret.)

Answer: The steps described are f → f−1 → (f−1 · x)x−1 → x/(f−1 · x),
so indeed provide the result.
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5. Equation (12.9) gives the projection of a unit 3D point at location x to become
a point at location x′, which is on the image plane, but it is not expressed yet
in image plane coordinates x. Show that the mapping from the 3D point at
x to the image point at x = x′ − f can be written as

x 7→ f (f−1 ∧ x)

f−1 · x

Interpret this expression geometrically, especially the numerator.

Answer: This is straightforward simplification:

x =
x

f−1 · x
− f =

f f−1 x− f (f−1 · x)

f−1 · x
=

f (f−1 ∧ x)

f−1 · x
.

Geometrically, this is the normalized rejection of the variable vector x by the
fixed vector f−1. That rejection (before normalization) lies on the eyeball
sphere of the previous exercise.



Chapter 13

The Conformal Model:
Operational Euclidean
Geometry

13.9 Exercises

13.9.1 Drills

These drills intend to familiarize you with the form of common geometric elements
and their parameters in the conformal model. We recommend doing them by hand
first, and check then with interactive software later.

1. Give the representation of a point p1 with weight 2 at location e1 + e2.

Answer: 2(o+ (e1 + e2) + 1
2 (e1 + e2)2∞) = 2(o+ (e1 + e2) +∞).

2. Give the representation of a point p2 with weight -1 at location e1 + e3, and
compute its distance to p1.

Answer: −(o + (e1 + e3) + 1
2 (e1 + e3)2∞) = −(o + (e1 + e3) +∞). The

squared distance d to p1 follows from

d = −2
p1 · p2

(−∞ · p1)(−∞ · p2)

= −2

(
2(o+ (e1 + e2) +∞

)
·
(
− (o+ (e1 + e3) +∞

)

(2)(−1)

= −2
(
2 o · ∞+ (e1 + e2) · (e1 + e3)

)
= −2(−2 + 1) = 2.

3. Give the representation of the line L through p1 and p2.

Answer: p1 ∧ p2 ∧∞ = −2(o+ (e1 + e2)) ∧ (e3 − e2) ∧∞.

4. Compute weight and direction of the line L.

Answer: We have given it in factorized form, in which the Euclidean direc-
tional element is read as −2(e3 − e2); so the weight is -2, and the conformal
direction element is −2(e3 − e2) ∧∞.

5. Compute the support point on the line L.

Answer: [[[ they only really learn to do that via Table 14.1 next
chapter? ]]]
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6. Give the direct representation of the plane Π through L and the unit point at
the origin.

Answer: Π = L∧ o = 2o∧ (o+ (e1 + e2))∧ (e3− e2)∧∞ = 2o∧ (e1 + e2)∧
(e3 − e2) ∧∞.

7. Compute the direction and support of the plane Π.

Answer: The direction is clearly 2(e1 + e2) ∧ (e3 − e2) ∧∞. [[[ support
chapter 14? ]]]

8. Give the representation of the translation over −e1 of the plane Π.

Answer: This translation only affects the location o, so that is simply
(o− e1) ∧ (direction) = 2(o− e1) ∧ (e1 + e2) ∧ (e3 − e2) ∧∞.

9. Compute the dual π of the plane Π. Compute its dual direction, and its
moment.

Answer: Dualization of 2o ∧ (e1 + e2) ∧ (e3 − e2) ∧∞ gives

(
2o ∧ (e1 + e2) ∧ (e3 − e2) ∧∞

)
I−1n (o ∧∞)

= 2
(

(e1 + e2) ∧ (e3 − e2)
)
I−1n (o ∧∞) (o ∧∞)

= 2
(

(e1 + e2) ∧ (e3 − e2)
)?
.

10. Compute the dual of the line L.

Answer:

L∗ = (−2(o+ (e1 + e2)) ∧ (e3 − e2) ∧∞)
∗

= (−2(o+ (e1 + e2)) ∧ (e3 − e2) ∧∞)c(o ∧ I−1n ∧∞)

= 2e1 ∧ e2 + 2e1 ∧ e3 + 2e1 ∧∞− 2e2 ∧∞− 2e3 ∧∞

Comparing this answer to the dual line in the homogeneous model (12.6), you
recognize the 2-blade that is dual to the direction vector, and the classical
moment vector −e1 + e2 + e3.

11. Erratum: This is a nonsensical question, which has been cancelled.
Compute the distance between L and its dual. (You will have to invent a
conformal formula for this yourself!)

13.9.2 Structural Exercises

1. Show that on the {e, ē}-basis, the point p of (13.3) is represented as:

p = p + 1
2 (1− p2) e+ 1

2 (1 + p2) ē.

In [33] and [15], you find the close relationship of this formula with stereo-
graphic projection spelled out, as another way of visualization the conformal
model. Unfortunately, it needs the two extra dimensions, so that you can only
visualize the model for a 1-dimensional Euclidean space.

Answer: Simply substitute (13.6) and rearrange.

3. In structural exercise ?? of Section ??, we introduced barycentric coordinates
using the homogeneous model. Using the correspondence between homoge-
neous model and conformal model, give expressions for the barycentric coor-
dinates in terms of conformal points.

Answer: Just use flat elements: α = x∧b∧c∧∞
a∧b∧c∧∞ et cetera.
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5. For a pure translation versor T , the logarithm is easy to determine. Show
that

log(T ) = 1
2 (T − T̃ ),

and adapt the algorithm of Figure 13.5.

Answer: T is the exponent of−t∞/2, which also occurs in its expansion T =

1− t∞/2. When you observe that T̃ = 1 + t∞/2, the result is immediate.

7. Show that the ratio of two flat points p∧∞ and q ∧∞ is a translation rotor.
What is the corresponding translation vector?

Answer:

(q ∧∞)/(p ∧∞) = (q ∧∞) (p ∧∞)

= (q∞+ 1) (p∞+ 1)

= 1 + q∞+ p∞+ q∞ p∞
= 1 + q∞+ p∞− 2q∞ (see exercise 2)

= 1− (q − p)∞
= 1− (q− p)∞,

Comparison with the rotor definition of Section 13.2.2 shows that the trans-
lation vector is 2(q− p), i.e., twice the separation of the points.

9. Show that the ratio of two lines p ∧ n ∧∞ and q ∧m ∧∞ is a general rigid
body motion. What are the screw parameters?

Answer:

(q ∧m ∧∞)/(p ∧ n ∧∞) =

= (q ∧m ∧∞) (∞∧ p ∧ n)

= ((q ∧m)∞−m) (∞ (p ∧ n) + n)

= −mn + (q ∧m)∞n−m∞ (p ∧ n)

= mn + (q ∧m ∧∞)n−m (∞∧ p ∧ n)

= mn + (−(q ∧m)bn−mc(p ∧ n)) ∧∞+ q ∧m ∧∞∧ n−m ∧∞∧ p ∧ n

= mn + (nc(q ∧m)−mc(p ∧ n)) ∧∞− (p− q) ∧m ∧ n ∧∞.
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Chapter 14

New Primitives for Euclidean
Geometry

14.9 Exercises

14.9.1 Drills

These drills intend to familiarize you with the form of common geometric elements
and their parameters in the conformal model. We recommend doing them by hand
first, and check then with interactive software later.

1. Give the direct representation of the point pair (0-sphere) P spanned by the
points p1 and p2 at location e1 and e2, with weights 2 and −1.

Answer:

2(o+ e1 + 1
2∞) ∧ (−1)(o+ e2 + 1

2∞) = −2(o+ e1 +∞/2) ∧ (e2 − e1)

2. Compute center and radius of P .

Answer: We can compute the radius squared using Table 14.1 (beware of the

errata correcting signs in this table!) as PP̂/(∞cP )2 = 1/2, and the location
through P/(−∞cP ) as being at (e1 + e2)/2.

3. Give the dual representation of P , and use it to compute radius and center.

Answer: Let us treat this as a planar problem, with pseudoscalar o ∧ e1 ∧
e2 ∧∞.

(
− 2(o+ e1 +∞/2) ∧ (e2 − e1)

)∗
= −2(o+ e1 +∞/2)c

(
(e2 − e1)

?
(o ∧∞)

)

= −2(o+ e1 +∞/2)c
(
(e1 + e2)(o ∧∞)

)

= −2
(
(o−∞/2) (e1 + e2)− o ∧∞

)

Now apply the dual formulas from Table 14.1 to get the same results for radius
and location.

4. Retrieve the locations of the original points from P (see (14.13) below).

Answer: Point pairs are the only rounds for which one can retrieve the
points that constituted them. The use of (14.13) is straightforward, and you
know what the answer should be since you made P yourself.
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5. Compute the carrier line of P , both in direct and dual form.
Erratum: carriers are only properly defined in the next chapter, Section 15.2.2.

Answer: The carrier of the direct round P is ∞∧ P = −2(o+ e1) ∧ (e2 −
e1) ∧∞. The carrier of the dual round p = P ∗ is the dual of this, and equal
to 2(e1 + e2 +∞).

6. Give the direct representation of the circle K through p1, p2 and the unit
point at location e3.

Answer: Computation of all the terms gives: −2(e1 ∧ e2 ∧ e3 + e1 ∧ e2 ∧ o−
e1 ∧ e3 ∧ o+ e2 ∧ e3 ∧ o+ e1 ∧ e2 ∧∞/2− e1 ∧ e3 ∧∞/2 + e2 ∧ e3 ∧∞/2).

7. Compute the squared radius and the center of the circle K.

Answer: Use Table 14.1, the result should be 2/3 and the point at (e1+e2+
e3)/3. The weights do not affect the geometry of the circle location, merely
its own weight.

8. Give the direct representation of the sphere Σ through K and the origin.

Answer: Computing all terms gives: Σ = −2(e1 ∧ e2 ∧ e3 ∧ o− e1 ∧ e2 ∧ o∧
∞/2 + e1 ∧ e3 ∧ o ∧∞/2− e2 ∧ e3 ∧ o ∧∞/2). The explanation is clear from
the dual (next subquestion).

9. Compute the dual of Σ and read off its center and squared radius, directly
from that dual representation.

Answer: Σ∗ = 2(o + (e1 + e2 + e3)/2), and it is clear that the center is
at (e1 + e2 + e3)/2, and the radius squared is the same as that of the center
point location, i.e. 3/4 (so that it cancels the potential ∞ term precisely).

14.9.2 Structural Exercises

1. The normalized sphere through four points p, q, r, s is: Σ = (p ∧ q ∧ r ∧
s)/(p ∧ q ∧ r ∧ s ∧∞)

∗
. Show that the Euclidean vector pointing to the center

of this sphere is

c = (o ∧∞)c
(
o ∧∞∧ Σ∗

)
=
(
(o ∧∞)cΣ

)?
,

Note that the final rewriting involves the Euclidean dual. The first form is the
rejection of the non-Euclidean parts from the dual. It is easily implemented
as simply listing the Euclidean part of the normalized sphere.

Answer: From Section 14.1.2, we know that the relationship with the dual
is Σ∗ = c− 1

2ρ
2∞ = o+ c+ 1

2 (c2− ρ2)∞. The rejection of o∧∞ then indeed
gives c.

3. The weight of a dual sphere σ is the weight of its center, and equal to ∞ · σ.
Dualize this expression to discover when a sphere through the points p, q, r,
s becomes zero.

Answer: (∞ · σ)
∗

= ∞∧ σ∗ = ∞∧ p ∧ q ∧ r ∧ s. This is zero when s is in
the plane p∧ q ∧ r ∧∞, i.e., when the points are coplanar. So the degenerate
sphere through four coplanar points, though a sensible algebraic object, has
weight zero.

5. For a flat point P = p ∧ ∞, (14.13) does not work, since it then requires
division by a null vector. In that case, the simplest method is to retrieve
the Euclidean position vector p and use that to make the point p. In an
implementation, the coordinates of p are found as the coefficients of the basis
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blades e1 ∧ ∞, e2 ∧ ∞, and e3 ∧ ∞, divided by the coordinate of o ∧ ∞.
Algebraically, show that

p = − (o ∧∞)c(o ∧ P )

(o ∧∞)cP
.

Answer: Just substitute P = p ∧∞:

− (o ∧∞)c(o ∧ p ∧∞)

(o ∧∞)c(p ∧∞)
=

(o ∧∞)c(o ∧∞∧ p)

(o ∧∞)c(p ∧∞)
=

p + 0 + 0

1 + 0
= p

7. Compute the meet of the dual circles κ1 = Te2
[(o − 1

2∞) (−e3)] and κ2 =
T−e2

[(o − 1
2∞) (−e3)], both residing in the e1 ∧ e2-plane. It is a tangent

vector — what is its weight, and how is that related to the geometry of the
situation?

Answer: κ1 = (o + e2) ∧ (−e3), κ2 = (o − e2) ∧ (−e3), Their meet is then
(κ2 ∧ κ1)

−∗
= (2o ∧ e2 ∧ e3)

−∗
= 2 o e1. So the weight is 2, and following the

computation you see that it is twice the radius of these same-size unit-weight
circles. You may want to see what happens with touching circles of different
size.

9. In Figure (14.7), the green line segments are part of the Voronoi diagram. The
points of these segments should represent Euclidean circles. Draw these circles
in the Euclidean space. Similarly, the edges of the Delaunay triangulation
represent circles, but they are imaginary. Draw some of those. (For a hint,
see Figure 15.8.)

Answer: The green lines in the figure are the dual of lines connecting points,
so they are of the form (p ∧ q)∗. If we demand to know what dual circle σ is
on such a line, we have to solve σ ∧ (p ∧ q)∗ = 0. By duality that is the same
as σc(p ∧ q) = 0. With p and q in general position, the resulting equation
(σ · p) q− q (σ · q) = 0 leads to σ · p = 0 and σ ∧ q = 0. Therefore we interpret
σ as the dual representation of a circle that contains both p and q. In the
Euclidean plane, such circles are easily drawn: any point of the perpendicular
bisector between the points p and q is the center of such a circle.
By contrast, the blue lines are much harder to interpret in the Euclidean
plane. Let us do a simplified computation to study them. Elements σ of
the blue line between p and q satisfy σ ∧ p ∧ q = 0. Therefore σ is a linear
combination of p and q, and if we normalize σ this can be written as the affine
combination σλ = λp + (1 − λ)q. Since everything is translation-invariant,
let us for convenience take q = o to study these elements. Then we find
σλ =

(
o+ λp + 1

2λ
2p2∞

)
+ 1

2λ(1− λ)2p2∞. This is an dual imaginary circle
with center at λp, and the squared radius −λ(1 − λ)p2. These correspond
precisely to the dashed purple circles in Figure 15.8. Geometrically, they are
not as intuitive as the points on the green lines.

11. Extending Figure 14.8, draw pictures displaying the inner product of two
spheres when the center of one is contained inside the other sphere, and when
one sphere is fully contained inside the other sphere.

Answer: These two constructons are essentially identical, we provide the
second. Let sphere 2 be the containing sphere. We construct the desired
squared distance ρ2 + ρ21 − d2E as ρ2 − (d2E − ρ21). The second term is the
squared length of the tangent to sphere 1 from the center of sphere 2. Call
the tangent point t; the total squared length is then found as the distance to
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sphere 2 measured perpendicularly to the tangent, from t (i.e., by extending
the line from the center of sphere 1 through the tangent point t till it intersects
sphere 2).



Chapter 15

Constructions in Euclidean
Geometry

15.8 Exercises

15.8.1 Drills

1. Compute the tangent at the origin of the sphere Σ through the points at
locations 0, e1, e2 and e3.

Answer: The tangent is a tangent bivector, given by the 3-blade o∧ 1
2 (e1 ∧

e2 + e3 ∧ e1 + e2 ∧ e3)

2. Factorize the circle K through the points at locations e1, e2 and e3.

Answer: We compute, using GAViewer:

K = e123 + (e12 + e31 + e23) ∧ o+ 1
2 (e12 + e31 + e23) ∧∞.

Then K’s carrier is K ∧∞ = e123 ∧∞ + (e12 + e31 + e23) ∧ o ∧∞, and its
surround is the dual sphere K

K∧∞ = o+ (e1 + e2 + e3)/3−∞/6 = o+ (e1 +
e2 + e3)/3 + 1

2 (1/3)∞− 1
2 (2/3)∞) = c − 1

2 (2/3)∞ (defining c and showing

that the radius equals
√

2/
√

3). In the factored form, we should be able to
write the carrier as a plane passing through the center c of the sphere. And
indeed, e123 ∧∞+ (e12 + e31 + e23) ∧ o ∧∞ = c ∧ (e12 + e31 + e23) ∧∞. In
total, the factored form is:

K =
(
c− 1

2 (2/3)∞
) (
c ∧ (e12 + e31 + e23) ∧∞

)
,

showing the K is the meet of a sphere and a plane.

3. Use that factorization of the circle K to spot its squared radius, center, carrier
and surround, by inspection.

Answer: The factorization is:

K =
(
c− 1

2 (2/3)∞
) (
c ∧ (e12 + e31 + e23) ∧∞

)
,

with c the point at 1/3(e1 + e2 + e3). The carrier is therefore c∧ (e12 + e31 +
e23)∧∞

)
, the surround the dual sphere c− 1

2 (2/3)∞
)
, and the squared radius

is 2/3.

4. Project the point at the origin onto the carrier plane of the circle K.

Answer: We project the point o at the origin onto the carrier plane Π given
in the previous question through the formula (ocΠ)/Π = o+(e1+e2+e3)/3+
1/3∞.
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5. Make the free vector, tangent vector, line vector and normal vector in the
direction e1, at the origin (if a location is required).

Answer: Using the formulas in the book gives

• Free vector: e1 ∧∞
• Tangent vector: o ∧ e1

• Line vector: o ∧ e1 ∧∞
• Normal vector: e1

6. Rotate each of the vectors of the previous exercise by π/2 in the e1∧e2 plane.
Explain the results.

Answer: Things rotate.

• Free vector: e2 ∧∞
• Tangent vector: o ∧ e2

• Line vector: o ∧ e2 ∧∞
• Normal vector: e2

7. Translate each of the vectors of the previous exercise by e1 + e2. Explain the
results.

Answer:

• Free vector: e2 ∧∞ — Free vectors are unchanged by translations

• Tangent vector: (o+e1 +e2 +∞)∧ (e2 +∞) — Don’t forget to translate
the Euclidean direction part

• Line vector: (o ∧ e2 + (e1 ∧ e2)) ∧∞
• Normal vector: e2 +∞

15.8.2 Structural Exercises

1. Express the scalar product of two blades in terms of the scalar product of
their duals. It should only differ by a sign, which you should express in terms
of the grade of the blades and the space they reside in.

Answer: Let I be the pseudoscalar of the space in which the dual is com-
puted (at least as large as the join of A and B).

A ∗B = 〈AB〉0 = 〈AI−1 IB〉0 = 〈 (AI−1) ((−1)b(i+1) BI) 〉0

= (−1)b(i+1)+
1
2 i(i−1)〈 A∗B∗〉0 = (−1)(b+i/2)(i−1) A∗ ∗B∗,

with b ≡ grade(B) and i ≡ grade(I).

3. Show that the tangent of a tangent is zero. (Hint: Realize that a tangent is
also a round; now use (15.1).)

Answer: Since a tangent is just a regular element of the algebra we can
indeed apply (15.1), and the result follows as pc(pcX̂) = (p ∧ p)cX̂ = 0.

5. Show that the dual sphere s = rc(p∧ q) = (rcp) q− (rcq) p is a member of the
parametrized family (15.6), passing through r (but non-normalized).

Answer: The dual sphere s clearly passes through r, since r · s = 0. If the
point is non-normalized, we have an extra weight α, so we can set α(λp+(1−
λ)q) = −(r ·q)p+(r ·p)q, and solve that α = r ·(p−q), λ = 1/(1−r ·p/r ·q).
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7. Give the formula for the circle through a point pair p∧ q intersecting the dual
plane π perpendicularly. Also, the circle having a tangent vector in direction
u at p, and plunging into π.

Answer: These are simple applications of the basic construction procedures:
p ∧ q ∧ π and pc(p ∧∞∧ u) ∧ π.

9. Construct the ‘contour’ of a sphere Σ as seen from a point p, i.e., the circle
K of points where the invisible part of the sphere borders the visible part,
as in Figure 15.13. (Hint: the white sphere in the figure is a clue to the
construction. Express it first, using the plunge. Then construct the circle as
a meet.

Answer: The construction is based on the idea that a sphere Σp through
that circle, with p at its center, plunges into Σ perpendicularly. So in dual
form (using lower case for the duals), sp = sc(something). We also know that
p is the center of sp, which means it should plunge into the flat point p ∧∞
(as in Fig. 15.4b). So sp = sc(p ∧∞). Note that this generalizes (14.4), since
s is now a general dual sphere, not merely a point. Then the circle we are
looking for is obtained by the meet of Sp with S, which is done as

K =
(
σ ∧

(
σc(p ∧∞)

))−∗
= σc

(
σ ∧ (p ∧∞)

−∗)
.

This is a pleasantly coordinate-free parameterization of the sought-for ob-
ject. The advantage of such parameterizations appears when using the full
geometric calculus of Chapter 8, in which we can directly differentiate such
expressions to their constituents in a coordinate-free manner.

11. Show that the tangent with direction element E at p can be written in two
equivalent forms:

tangent E at p: p ∧
(
− pc(Ê∞)

)
= pc(p ∧ Ê ∧∞).

Answer: Easy expansion of the contraction on both sides.
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Chapter 16

Conformal Operators

16.10 Exercises

16.10.1 Drills

1. Reflect the line L through locations e1 and e2 in the unit sphere at the origin.

Answer: L = (o+ e1) ∧ (o+ e2) ∧∞ = (o+ e1) ∧ (e2 − e1) ∧∞. Then use
pg. 466 to reflect L term by term, giving C = (∞/2 + e1) ∧ (e2 − e1) ∧ (2o).
This should be a circle, but that is not obvious.

2. Factorize the result of the previous exercise to determine its center and squared
radius.

Answer: Using (15.4), we compute the carrier C ∧ ∞ = 2e1 ∧ e2 ∧ o ∧ ∞.
Then compute S = C/(C ∧ ∞) = o + 1

2 (e1 + e2), which is a sphere with
center at (e1 +e2)/2 and radius squared S2 = ρ2. The factorization cuts that
sphere perpendicularly by the plane to produce the circle, of which center and
radius are therefore (e1+e2)/2 and ±ρ. We recommend you to visualize these
computations by GAviewer.

3. Reflect the tangent vector at e1 + e2 in the direction 2e3 in the unit sphere
at the origin. Notice especially the weight of the result!

Answer: Set p = o + e1 + e2 +∞, then the tangent vector is T = pc(p ∧
(2e3) ∧ ∞) = −2(e1 + e2) ∧ e3 + 2e3 ∧ (o +∞). Reflecting using page 466
gives T ′ = −2(e1 + e2) ∧ e3 + 2e3 ∧ (2o +∞/2). This is another tangent
vector, interpretation can be done by factorization. Its carrier is T ′ ∧ ∞ =
(o+(e1+e2)/2)∧(−4e3)∧∞, showing that the weight is 4. Then T ′/(T ′∧∞)
is its location, at (e1 + e2)/2.

4. Scale the line L by a factor of e2, from the origin.

Answer: L = (o+ e1)∧ (e2− e1)∧∞, and using page 470 with γ = 2, gives
L′ = (e−2o+ e1) ∧ (e2 − e1) ∧ (e2∞) = (o+ (e2e1)) ∧ (e2 − e1) ∧∞. So the
line moves e2 further out of the origin.

5. Scale the line L by a factor of e2, from the point e1.

Answer: Two methods: use the translated scaling versor Te1 S T−e1 , or
translate the line to the origin, scale, and put back. It is then basically a
scaling of o ∧ (e2 − e1) ∧∞, which is the identity. So L remains unchanged
(see also structural exercise 4).
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6. Reflect the line L in the origin.

Answer: According to Section 16.3.2, this uses the versor R = o ∧∞. Be
careful, its inverse is not its reverse, but R−1 = R. This has no effect on a
Euclidean element, but (o∧∞)o(o∧∞) = −o and (o∧∞)∞(o∧∞) = −∞, so
the line L = (o+e1)∧(e2−e1)∧∞ becomes L′ = (−o+e1)∧(e2−e1)∧(−∞) =
(o− e1)∧ (e2− e1)∧∞. This is a line in the same direction, passing through
the reflected location.

You may have expected a line in the opposite direction; but the reflection
of a point affects both its location and its weight. This applies also to the
point at infinity, and that causes the line to seemingly preserve its direction.
(Actually, the direction changes relative to the new support vector.)

To study this strange effect more purely, note what the reflection o∧∞ does on
a tangent oE: it becomes (o∧∞)(oE)(o∧∞) = (o∧∞)o(o∧∞)E = o(−E),
precisely what you would expect. But this effect is canceled for a line by the
sign change of ∞ under reflection in the origin.

7. Reflect the line L in the point e1.

Answer: Now you should use the versor Te1
(o ∧ ∞)T−e1

= (o + e1) ∧ ∞.
This transforms o into −(o + 2e1 + 2∞), it transforms ∞ into −∞ and the
Euclidean vector e1 into e1 + 2∞, and e2 into e2. Putting it together on
L = (o + e1) ∧ (e2 − e1) ∧∞ shows that the line is invariant, even after the
previous exercise still a surprise.

16.10.2 Structural Exercises

1. Show that the general inversion formula for a point in a dual sphere at the
origin o− 1

2ρ
2∞ is:

Tx[o] 7→ x2

ρ2
Tρ2x−1 [o].

Note that this implies that imaginary spheres involve a central reflection in
the origin (as well as the inversion of the distances to the origin).

Answer: Compute complete analogous to the results on page 406. Do not
forget that the inverse dual sphere is divided by its squared norm ρ2.

o 7→ −(o− 1
2ρ

2∞) o (o− 1
2ρ

2∞)/ρ2 = − 1
4ρ

2∞ o∞ =∞ ρ2/2

∞ 7→ −(o− 1
2ρ

2∞)∞ (o− 1
2ρ

2∞)/ρ2 = −o∞ o/ρ2 = 2 o/ρ2

E 7→ −(o− 1
2ρ

2∞)x (o− 1
2ρ

2∞)/ρ2 = 1
2ox∞−

1
2∞x o = x.

Therefore the point x = o+ x+ 1
2x

2∞ transforms to ∞ ρ2/2 + x+ x2/ρ2 o =
(x2/ρ2)

(
o+ ρ2 x−1 + 1

2 (ρ2x−1)2∞
)
, which is the representation of the point

at the location ρ2 x−1, with a weight of x2/ρ2.

3. Figure 16.11 shows the reflection of various elements in the brown point pair;
all elements reside in the plane of the drawing. Compare this to the spherical
reflection Figure 16.1 and understand the differences. (Hint: Use the factor-
ization of the point pair by a sphere and well chosen planes.)

Answer: The hint helps you to see this as a multi-step operator; clearly one
of the planes should be chosen to be the drawing plane.

5. We claimed in Section 16.4 that a transversion can also be constructed as the
reflection in two touching spheres. To determine the standard form of such a
transversion, put the spheres symmetrically around the origin with their origin
at ±a. Show that this gives the transversion versor as −a2 (1 − 2o ∧ a−1).
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What should you take as the distance of the touching spheres to obtain the
standard transversion rotor exp(−o ∧ t/2)?

Answer: We get o − a) (o + a) = −a2 + 2o ∧ a = −a2(1 − 2o ∧ a−1 =
−a2 exp(−2oa−1). So, barring a scaling factor, we should set a = 4/t.

7. In Figure 16.12, we have generated a torus by generating a few circles. the
inversion in a sphere of a torus is called Dupin’s cycloid. In the conformal
model, its circles are simply the torus circles defining the torus inverted in the
sphere. Write pseudocode to generate this figure with just a few parametrized
operations.

Answer: You can look at the GAviewer code for this figure. The principles
behind it are simple: generate the green torus as a collection of circles, and
reflect each of those in the dual sphere (using it as a versor) to generate the
red circles describing Dupin’s cycloid.

Let us take as ‘wheel axis’ for the torus the line L = o ∧ e2 ∧ ∞. Take a
standard point p = ρ1e1 at the ‘inner tube radius’. A direct circle through
that point around the origin is C = (p+ ρ21∞)∧ e1 ∧ e2. Translate that using
the versor exp(−ρ2e1∞) to get it at the proper ‘wheel radius’, and rotate in
k steps around the line L using the versor exp(L∗π/k) repeatedly. That gives
the direct representation of the rings around the tube.

To generate the rings around the wheel rim, take the standard point p and
rotate it in the e1 ∧ e3 plane over the desired number of steps to generate
points along the tube. Translate all results over ρ2e1 to place them at the
wheel rim. Now use those translated points pi to generate circles along the
wheel, directly, as pi ∧ L∗.

9. Figure 16.13 depicts the same situation, at the same scale, of a green line
L = p ∧ q ∧ i through two points p and q (one of which is the center of the
black circles), and a flat point r ∧ i (in blue). In all three figures, the line is
used in a translation versor exp(icL/2) to translate a the point p over equal
distances, and dual circles are made with the original point as its center as
tc(p ∧ i). The only difference is the element used for the infinity i (in light
red). Identify the metrics and explain the differences, as quantitatively as you
can. You can pick i from e1, o, ∞, o−∞/2, o+∞/2, o+ e2 +∞/2.

Answer: A better feeling for these figures may be obtained by studying them
interactively using GAviewer (type FIG(16,13)). Note that o+ e2 +∞/2 is
a point. (a) is a hyperbolic geometry, so i = o +∞/2; (b) is a Euclidean
geometry, so i = ∞; (c) has a plane as its infinity, i = e1; (f) is a spherical
geometry, i = o + ∞/2. That leaves i = o and i = o + e2 + ∞/2, both
points. Due to the translation invariance of the conformal geometries, these
should really lead to the same phenomena. Only by knowing more about the
locations could you truly tell them apart. In fact, the former is (d), the latter
(e). Both can be seen as Euclidean planar geometry inverted in a circle (since
that turns the Euclidean invariant∞ into a point at the center of the circle).
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Chapter 18

Implementation Issues

18.4 Structural Exercises

1. In a 2D Euclidean geometric algebra on an orthonormal basis {e1, e2}, the
general element X can be written as:

X = x0 + x1 e1 + x2 e2 + x12 e12.

According to Table 18.1, this algebra should be representable as the matrix
algebra R(2), i.e., we should be able to find a 2 × 2 matrix representing the
general element so that the geometric product of elements is represented as
the matrix product. Show that the following works:

[[X]] =

[[
x0 + x2 x1 − x12
x1 + x12 x0 − x2

]]

(This is not unique, some permutations of the same principles work as well,
but not all. Why must the scalar part always be on the diagonal?)

Answer: Since matrix multiplication is linear and associative (and so is
the geometric product), the simplest way to check this is to make the repre-
sentation of the basis elements {1, e1, e2, e12} and verify that their geometric

products are correct. For instance, [[e1]] =

[[
0 1
1 0

]]
and [[e2]] =

[[
1 0
0 −1

]]
,

and multiplying we find

[[
0 −1
1 0

]]
, which is indeed [[e12]]. Check all of them

in this way.

3. For a 3D Euclidean vector space, the matrix representation C(2) from Ta-
ble 18.1 may be generated by:

[[X]] =

[[
z x+ iy

x− iy −z

]]
,

where i is the complex imaginary (so i2 = −1). Verify this and compute the
representation of a general element of this algebra.

Answer: You may realize that the complex numbers can of course be viewed
as 2-D rotation operators and therefore can be represented by 2× 2 matrices,

with [[1]] =

[[
1 0
0 1

]]
and [[i]] =

[[
0 −1
1 0

]]
. Then this is exactly like like the

previous exercise, and the result is
[[

(α0 + α3) + i(−α12 − α123) (α1 + α31) + i(α2 − α23)
(α1 − α31) + i(−α2 − α23) (α0 − α3) + i(α12 − α123)

]]
.
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The complex numbers group some of the inherent symmetries of the geometric
algebra structure.



Chapter 20

The Linear Products and
Operations

20.3 Structural Exercises

1. Why are the first columns of [[AG]] and [[AO]] equal to [[A]]?

Answer: Essentially, because A 1 = A ∧ 1 = A. And because Ac1 = 〈A〉0,
the first column of [[AL]] only contains the scalar component 〈A〉0.

3. You know that aB = acB+ a∧B for a vector a and a blade B. How do you
recognize this fact in the relationship of [[AG]], [[AL]] and [[AO]] ? Why do we
not have [[AG]] = [[AL]] + [[AO]] ?

Answer: Because the additive property only holds for general vectors. So
certainly if A is a vector that has only A1, A2 and A3 non-zero, this holds.
Indeed at those entries of [[AG]] that consist of ±A1, ±A2 and ±A3, it is
the sum of the corresponding entries from the other matrices as well. There
are other entries that sum as well, for instance the one corresponding to
(A12e12) e3 = (A12e12)ce3 +(A12e12)∧e3 = 0+A12e123 (i.e., entry (4, 8)).
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Chapter 22

Specializing the Structure for
Efficiency

22.7 Structural Exercises

1. The weighted sum of which basis blades is required to represent a plane in
general position on the o,∞-basis? And on the e, ē-basis?

Answer: Let us answer this for 3-D. Then a plane is a 4-blade of the form
p ∧A ∧∞, with A a Euclidean bivector. Working it out, all that remains of
p are the non-∞ parts, so a 4-dimensional basis of o∧ eij ∧∞ and eijk ∧∞ is
sufficient. When using e and ē, by virtue of o∧∞ = e∧ ē the first part of this
is the same, but making ∞ requires both e and ē, so 1 more basis element is
required.

3. Is there a difference in the basis for rotors and versors?

Answer: Rotors are essentially properly scaled versors. In a versor one could
always set the first component to 1 and save a coordinate (at least if you are
always planning to use it in a versor product), but in principle they require
the same basis.
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