Experimentation

RESEARCH PROPOSAL

When asked which career achievement I value
most, | always put in first place the fifty-two grad
students I have supervised. Each student partici-
pates in all three stages of research, refining the
topic into a well-defined problem, solving the
problem, and writing the results as a thesis. I think
that the first stage is the most important and that
student initiates topic based on their owninterests,
not on mine. Thus, each student works on a topic
he or she chooses, which is essential because good
research requires a passion for its topic.

My passion is the empirical research methodol-
ogy I teach my students. It starts with a simple
abstract model, which the student first creates then
explores doing casual experimentats. The student
then refines the model based on the results and the
refined model is further explored. The process
ends with a model that describes the phenome-
non. Sometimes the model provides the abstrac-
tion for a formal experiment, sometimes for an
implementation, sometimes for a theorem.
According to the students, and to their employers,
it is a successful method of graduate training.

More generally, my passion is how we learn by
empirical exploration, and by all types of experi-
mentation. The research proposed in this applica-
tion is a response to my passion. Until now, my
engagement with experimental methods has been
ad hoc: as a problem revealed itself the student
developed a solution specific to it. So to say, I was
myself engaged in exploratory experimentation.
Now I wish to go on to the next stage, formalizing
and codifying a career’s insights in a monograph to
expose them to a wider audience. Most of my
experimental experience is in computer graphics
(CG) and human-computer interaction (HCI). I
have also taught courses on simulation and experi-
mentation for performance analysis, and super-

vised an experiment based on an Al simulation [6].

A. INTRODUCTION

Exploratory experimentation is natural and ubiq-
uitous: anthropologists say it is rooted in everyday
life [4]; psychologists say it is the base of infant
learning [8]. All sciences use it, even mathematics:
Gauss, for example, claimed he discovered mathe-
matical truths ‘through systematic experimenta-
tion’. But, I must teach it to my students.
Computer science education emphasizes thought,
planning and formalization, and students are wary
just trying something out, at least in front of their
supervisor. In contrast, my contacts in industry
aver that where commercial software innovates it is
rife with ill-understood constructs that just happen
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to work: innovation precedes understanding, as
exploratory experiments precede theory.

Exploratory experimentation is well understood
because there’s not much to understand. It empha-
sizes destination over route; its methodology is
‘anything goes’ [5].

The same cannot be said for for-
mal experimentation. Exploratory
experiments are for finding truth.
They are rarely convincing to a
third party. (The bistability of the
Necker cube shown to the right,
which is immediately apparent, is an exception.)
Formal experimentation is for sharing truth. Con-
ducting a formal experiment, according to the prac-
tices of a scientific community, is the requirement for
making public an empirical claim. Practices are
specific to a discipline, and are slow to mature. In
the eighteenth century, for example, a knowledge-
able, disinterested third party had to witness an
experiment in person. Experiments were displayed
before an audience before they were published.
Now the standard is replication: a competent
researcher should be able to redo the experiment
and get the same result. (Until recently referees
were expected to replicate before accepting a paper
for publication.) To become ‘competent’ a student
of experimental physics must learn a complex net-
work of standards and procedures that completes
the published descriptions of experiments.

Computer science is a young science, six or
seven decades old. It has few stable experimental
practices; my experience is that few experiments
are replicable. (See §B for details.) We need stand-
ard practices, and we need them now, not a cen-
tury from now. Formal experiments are common
in algorithm analysis [10], in performance measure-
meny and in artificial intelligence, not to mention
CG and HCI.

Formal experiments are widespread because
computers are physical objects of extreme com-
plexity, and because the human mind best tames
complexity using the model/experiment method.
Knowledge gained using like this sometimes
reduced to theorems, but more often it is the out-
come of a formal experiment.

In the past computer science has advanced by
finding in other disciplines concepts and processes
that improve its own practices. I believe that it can
do so to improve experimental practice. In the
next section I discuss experimentation in physics,
the most obvious discipline from which to borrow.
While physics has much to offer there are impor-
tant difterences between the demands of physics
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and those of computer science. In the following
section I examine the social sciences and find fur-
ther ideas there.

B. EXPERIMENTATION IN PHYSICS

This section introduces three prominent concepts
of experimental physics: cumulation, replication
and 1solation. Each concept is defined as under-
stood in experimental physics. Instances of it in
computer science, largely of my students, are
described, and research ideas I plan to explore.

B.I. CUMULATION

In all aspects of all sciences new research should be
cumulative. Its goal is not to stand by itself, a result
independent of all other research, but to be part of
a whole that is the collective knowledge of the dis-
cipline. If pieces of research are to cumulate, they
must share concepts and processes. Researchers
must form a community based on common ideas
and values. For example, we judge the health of a
experimental discipline not by the exploits of a
few virtuoso experimentalists, but by the ability of
the community to steadily accumulate a coherent
body of knowledge.

There exist many examples of cumulation in
computer science experimentation, such as experi-
ments on Fitts’ Law in HCI [15] or measurements
of network traffic [17]. But far too many experi-
ments are one-off evaluations or comparisons.
Huo assembled all experiments on visual query
interfaces, finding only two that were similar
enough to compare, which produced opposing
results. Better to understand cumulation in com-
puter science I plan to assemble as many examples
as possible of successful cumulation, to see what
they have in common. Preliminary work suggests
that they share strong models that provide exten-
sive abstraction. Much of each model originates
outside computer science, suggesting that cumula-
tion requires a multi-disciplinary approach.

B.2. REPLICATION

Replication is a necessary condition for cumula-
tion, though not a sufficient one. When it is possi-
ble to do the same experiment and obtain the
same results the experiment is said to be replicable.
Ideally, another experimentalist needs only the
published paper plus knowledge of the experimen-
tal practice of the discipline to perform a successful
replication. The increasing complexity of modern
experimentation puts a strong emphasis on the
second requirement, Students of physics get expo-
sure even as undergraduates, where they replicate
historical experiments in lab courses. As graduate
students they are expected to replicate existing
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results in their area before undertaking their own
experiments. New apparatus or modifications of

existing apparatus are extensively tested by repli-

cating previous results before being put into serv-
ice.

As a young faculty member I naively expected
students to replicate existing results. It was rarely
possible. Experimental tradition was so weak that
no paper could contain all the details needed to
replicate its results. Later over several terms I had
students in a user interface course replicate classic
results in HCI as assignments. Some experiments
replicated consistently, despite variations in imple-
mentation and context; other replicated not at all.

Replicability is essential. It is difficult because it
is the property of a community, not of a single
experiment or its write-up. To investigate replica-
bility I will hire undergraduate students to reim-
plement and run classic experiments, carefully
recording every assumption made in order to com-
plete a successful implementation. Comparing
assumptions will give an estimate of community
practice. Comparing implementations will, I hope,
lead to a useful proxy for implementation, so that
its doesn’t have to be treated as a random variable
in the analysis.

B.3. IsoLATION

Another practice of experimental physics is the
creation of special environments in which the
effect to be measured dominates the behaviour of
the system, which greatly simplifies the models
supporting the experiment. Newton, for example,
did not expect his laws of motion and gravitation
to predict the motion of a leaf falling from a tree.
The model required to make sense of the measure-
ments was truly impossible to create, as it remains
to be. As an alternative to leaves, corrupted com-
ponents of the sublunar sphere, he had the uncor-
rupted planets, which provided observations, for
more on which see §c.2, in which forces other
than gravity play a negligible role. Isolation, as
practised in the twenty-first century, now rests on,
an immense cumulation of well-tested models and
experiments. Current experimenters do not
expect to get replicable results from corrupted
specimens, for reasons that are well-supported in
current physics.

Thus, replication is at odds with the desire in
computer science for ecological validity, which
usually amounts to doing experiment in condi-
tions that are as ‘real world” as possible. Like the
real world falling leaf, real world examples in com-
puter science are too complex to admit under-
standable models. Realising that there are perfectly
valid reasons for rejecting replicability, we should
not expect such experiments to be replicable, and
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ipso facto neither should we expect them to cumu-
late.

Isolation is practised in computer science, the
experiments of Mytkowicz et al. [16] is an example
of systematically removal of confounding factors
that would be impressive in any experimental sci-
ence. Preferring a generality over ecological valid-
ity I have tried to guide my students to
experimental designs with as few confounding fea-
tures as possible.

Ph.D. student Jiwen Huo [9] introduced experi-
mental manipulations that isolated perceiving from
truth calculation in the minds of subjects evaluat-
ing the truth of Boolean queries. Systematic difter-
ences between the isolated variables when the dis-
plays were images or text allowed us to conclude
that there are two qualitatively different ways for
comprehending Boolean expressions. Isolation
plus a strong model enabled a result that has wide
generality.

M.Math student Ed Dengler [2], using a ques-
tionnaire, showed that the same graph, differently
laid out, can produce very different interpretations.
Despite deliberate use of a heterogeneous subject
group the data was very clean and the inter-subject
results consistent, owing to a six month period of
pilot experiments during which confounding vari-
ables were gradually stripped from the graphs pre-
sented in the questionnaire.

These three examples show that isolation is an
effective experimental strategy in computer sci-
ence. The next step is to understand the trade-off
between real world and isolation in computer sci-
ence experimentation. <<More, including
Kroeger if there is space>>

C. EXPERIMENTATION IN THE SOCIAL SCIENCES

The previous section described possible research
based on analogies with physics, which of all sci-
ence has the most mature experimental practices.
Computer science, however, cannot merely imi-
tate physics, but should create its own community
standards. In this section we examine two social
science disciplines, psychology and economics,
that have immature experimental practices that
offer some ideas that computer science could
adopt with benefit.

C.I. STANDARDIZATION AND OPERATIONAL DEFINITION

Models are most eftective when they are based on
a deep reservoir of standards. Standards have two
faces: one face is a model component, an abstract
black box with well-defined properties; the other
face is an experimental practice used to control.
For example, in an experiment that depends on
vision, the physical display, CRT, LCD or OLED,
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appears in the model as a device capable of putting
optical patterns on the retina of the subject. It has
properties like spatial and temporal resolution, col-
our gamut, surface reflection and so on. The same
device. It is also a physical devices that is part of
the experiment. To control resolution, colour,
reflection et al., there are experimental practices
that focus the pixels, that calibrate the colour, that
adjust room lighting, et al. The experimenter is
expected to decide whether or not these aspects of
the display are relevant to the experiment, and if
they are, how to control them.

This example is easy to understand: an easy to
identify object has relevant physical properties that
are standardized by physical manipulation. Most
experimentation in physics requires exactly such
standardization. In psychology things are more
complex because experimenters wish to use model
elements, like attention, or cross-hand interfer-
ence, that are ill-defined fuzzy and vague. Psychol-
ogists use operational definition to solve such
problems. Cross-hand interference, for example, is
defined to be zero when the performance of a task
by one hand is uninfluenced by independent tasks
performed by the other hand. The model element
is defined, not in terms of its intrinsic relationships
with other elements, but by its experimental con-
sequences, which makes it easy to integrate into an
experiment. Now that experiments on cross-hand
interference can be performed, their results will,
one hopes, allow the definition to evolve, accret-
ing conceptual baggage until a well-defined psy-
chological entity emerges. Thus, operational
definitions have allowed psychology to pass more
rapidly toward well-defined theoretical concepts
than physics did.

My earliest research in computer graphics ena-
bled the adoption of colour standards by the com-
puter graphics community [1], closely followed by
using colour standards to perform experiments in
what is now HCI [19]. Later, M.Math. student
Raymond Yiu [21] and Ph.D. student Martin Tal-
bot [20] used operational definitions to interact
with scorers in double-blind experiments. Huo
also used operational definitions of perceive and
comprehend in her experiment [9].

<<More>>

C.2. OBSERVATION

Many scientists, astronomers for example, are una-
ble to perform controlled experiments. Instead,
they observe phenomena they cannot control and
look for cross-observation correlations among
observed properties and use them to refine models.
Astronomy, of course, has strong models of the
four elementary forces, which constrains models
and gives them substance. Without a strong
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uncontested theory for establishing models, eco-
nomics, a science in which most experiments
would be unethical, has developed econometrics, a
collection of strong methods for drawing conclu-
sions from noisy and confounded observations.

During a time when my students had access to
managers and programmers at the IBM Toronto
laboratory they did observational studies investi-
gating software engineering [3, 7, 13]. The observa-
tions were dictated by intuitive models, which
were then more or less confirmed when the obser-
vations showed trends similar to those predicted by
the models. These data were, however, not suffi-
ciently extensive to benefit from econometric
methods. Observational experiments I intend to
pursue, which will benefit from econometric tech-
niques are the longitudinal experiments described
below (§c.3).

Equally interesting as an object of study is the
tension between ecological validity, close imitation
of real world instances, and the generality sought
by science (§8.3). Suppose we accept a pessimistic
interpretation of Mytkowicz et al. [16]. Then per-
formance measurements that are both replicable
and general are possible only by stripping away
very fundamental features of real computers, such
as CPU instruction and data caches. We can then
progressively re-enable the stripped away features,
and get a sequence of measurements that are corre-
spondingly more noisy. Deterministic replication
gives way to statistical replication, with ‘suitable’
sampling from a poorly defined universe of system
configurations and loads. At the end of this con-
tinuum are real, non-instrumented systems
processing real loads in the real world. Such sys-
tems can only be observed, controlled experiments
are not possible. All the power of econometrics
will be needed to make the sequence of measure-
ments and observations comparable. I intend to do
this experiment which, in addition to its intrinsic
value, will be a real challenge to the ideas in this
proposal.

C.3. LONGITUDINAL EXPERIMENTATION

Consider a biological experiment that wishes to
compare the knees of twenty year olds to the knees
of fifty year olds. The simplest way of doing so is
to compare a young group to an old group. This
procedure has both systematic artifacts — the old
group was twenty years old thirty years ago, when
nutrition and excise habits were quite difterent —
and random artifacts — knees actually differ a lot
among the population. Medical statistics has cre-
ated many methods for reducing the variation,
such as choosing a sample of matched pairs. All
would agree, however, that the preferred way of
doing this experiment is to choose one group of
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twenty year olds, measure them, and wait for thirty
years, if, of course, you can stand the wait. The
constraints of longitudinal experimentation — sub-
jects have to get on with their lives — means that
the data is largely observational.

Longitudinal studies are rare in computer sci-
ence: last year’s system, interface, algorithm is
implicitly taken as contributing only to the history
of technology. As a result, where longitudinal
experiments exist, such as those of M.Math stu-
dents Celine Latulipe [12] and Erin Lester [14], they
examine short term changes in users or in adaptive
systems such as JIT compilers. The two studies I
supervised, both controlled experiments, were not
successful: to observe learning, thirty hours of use
1s too short and a dozen subjects is not enough.
These results suggest that longer observational
studies are best: the Schroeder & Gibson [18] study
of hard disk errors is exemplary, but depended on
the existence of just the right dataset.

Creation of datasets, which are used and reused,
1s usually hard work. But without them longitudi-
nal analysis of observations. Recognizing this,
economists regard creation of a publically available
dataset as an important research achievement. Sev-
eral years ago, to present at a seminar, I used sys-
tem logs to make observations showing a
contagion model of software adoption. I intend to
create longitudinal observational datasets contain-
ing feature sets of 2D and 3D graphics software to
identify clusters of features that appear together.
The will be compared to the results of pilot exper-
iments done by undergraduate Eoghan Sherry,
which will be continued. They modelled user
interfaces as group algebras. The subgroup struc-
ture is created by clusters of features that require
each other to be useful.

D. SUMMARY

The emphasis of the proposed research is improv-
ing the state of experimentation in computer sci-
ence. Other disciplines have taken centuries to
create mature experimental practices: I propose
that by explicitly adapting experimental techniques
from other disciplines, as my students have been
doing implicitly for two decades, we can speed the
maturing of experimentation within computer sci-
ence.

During the five years covered by this application
[ expect to graduate a further dozen students, most
of whom will go to industry. They will choose
their own research topics, but all will learn my
model/explore methodology and many will
design, pilot, run and analyse formal experiments.
Their results will be published in appropriate ven-
ues. The projects explicitly proposed in this appli-
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cation I will do myself, assisted by undergraduate
students with UR As.

While this 1s going on I will complete a research
monograph that I have begin writing, and of
which this application is a brief synopsis. The
monograph will, I hope, disseminate these experi-
mental techniques throughout computer science,
as Johnson did for theoreticians [10]. Doing exper-
iments that cumulate is exacting, and I hope that
my research will raise the status of experimenta-
tion, and contribute to the formation of an exper-
imental community with shared goals and
standards.
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