/* Copyright 2000, University of Washington Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission notice and warranty disclaimer appear in supporting documentation, and that the names of the authors or their employers not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The authors and their employers disclaim all warranties with regard to this software, including all implied warranties of merchantability and fitness. In no event shall the authors or their employers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of this software. */ /* isohedral.ih This file contains the set of information used by our software to encode the isohedral tilings. The only element missing is the set of tiling vertex parameterizations, which can be found in params.py. The format of this file is slightly different than what's described in the paper (the paper's version is altered to simplify the exposition). Here are the important differences: * Some incidence symbols are _rotated_ with respect to the presentation in Grunbaum and Shephard. That means that we start the enumeration of edges at a different tiling edge, resulting in a different (but equivalent) symbol. I did this in the cases that the incidence symbols weren't compatible with their topological types. * The twelve IH types that can only be represented with marked tiles are not given (see figure 6.2.5 of G+S). These tiles are uninteresting from an ornamental point of view, since their edges cannot be modified. * Indices are zero-based, not one-based. This affects the assignment of colours to indices, the two colour permutations, and the edge numbers given in the rules section. * Aspects have explicit names, not just indices. When a rule refers to an aspect, it refers to that aspect by name. * The format for rules is a little more rich. Instead of always starting from the first aspect in the translational unit at the origin, you can start from _any_ aspect by naming it. Thus the rule aspect 2r 1r:2,3 means "to obtain the transform for aspect "2r", start from aspect "1r", hop across the edge in that tile with index 2, then across the edge of the next tile with index 3." Each hop multiplies on a transform matrix. Each hop is taken from the tile arrived at via the previous hop, and edge indices (zero-based) are measured from the start of the incidence symbol. Please contact me at csk@cs.washington.edu if you have questions about the information in this file. For more details about our system, see the paper "Escherization", by Craig S. Kaplan and David H. Salesin, in the SIGGRAPH 2000 Conference Proceedings. Craig S. Kaplan */ /* December 1st, 2000 Many of the colourings have been updated. There was a bug in my implementation that reversed translation vectors, and this file was correct relative to that bug. It should be fixed now. Big thanks to Jens Kilian for finding this problem. Note: there are probably still implementation problems related to dependencies in the order that aspect rules are computed. Use a topological sort. Note: at some point, provide perfect colourings. */ /* May 8th, 2002 Recently, I noticed a problem in the way the tiling vertex parameterizations interact with the incidence symbols given here. There should be no reason why you can't use the vertex parameterizations to create tile shapes with degenerate tiling edges (i.e., collapse two tiling edges of the hexagon in IH1 down to zero, and obtain a parallelogram). The problem is that the computation of aspect transforms or translation vectors can get messed up with you allow degenerate edges, since you then can't determine the rotation or reflection across that edge. I don't have a really good solution at this time. The answer might be to offer alternate versions of some tiling types that avoid the bug. For example, because aspect "2" of IH27 is computed by jumping across edge 0, that edge can't be degenerate. You need an alternate IH27 that doesn't use edge 0 to get the transform for aspect "2". On the other hand, it might turn out that the correct transform across a degenerate edge is _always_ either a 180 degree rotation or a reflection across an easily-determined line. I'll think about this problem some more. */ template IH01 { symbol [a+b+c+d+e+f+;d+e+f+a+b+c+] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH02 { symbol [a+b+c+d+e+f+;b-a-f+e-d-c+] topology 3^6 aspects 1,1r colouring 3 (0 1) (1 2 0) (0 1 2) rules aspect 1r 1:0 translate T1 1:2 translate T2 1r:3 } template IH03 { symbol [a+b+c+d+e+f+;c-e+a-f-b+d-] topology 3^6 aspects 1,1r colouring 3 (0 1) (2 0 1) (2 0 1) rules aspect 1r 1:0 translate T1 1:1 translate T2 1r:5 } template IH04 { symbol [a+b+c+d+e+f+;a+e+c+d+b+f+] topology 3^6 aspects 1,2 colouring 3 (0 1) (2 0 1) (2 0 1) rules aspect 2 1:0 translate T1 1:1 translate T2 2:3 } template IH05 { symbol [a+b+c+d+e+f+;a+e+d-c-b+f+] topology 3^6 aspects 1,2,1r,2r colouring 3 (0 1 2 1) (2 0 1) (2 0 1) rules aspect 2 1:0 aspect 1r 1:3 aspect 2r 1r:5 translate T1 1:1 translate T2 1:3,5,2,0 } template IH06 { symbol [a+b+c+d+e+f+;a+e-c+f-b-d-] topology 3^6 aspects 1,2,1r,2r colouring 3 (0 1 2 2) (1 2 0) (0 1 2) rules aspect 2 1:0 aspect 1r 1:1 aspect 2r 2:1 translate T1 1r:1 translate T2 2r:5 } template IH07 { symbol [a+b+c+d+e+f+;b+a+d+c+f+e+] topology 3^6 aspects 1,2,3 colouring 3 (0 1 2 ) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 1:1 translate T1 2:3 translate T2 3:4 } template IH08 { symbol [a+b+c+a+b+c+;a+b+c+] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH09 { symbol [a+b+c+a+b+c+;a+c-b-] topology 3^6 aspects 1,1r colouring 3 (0 1) (2 0 1) (0 1 2) rules aspect 1r 1:1 translate T1 1:0 translate T2 1r:4 } template IH10 { symbol [a+b+a+b+a+b+;b+a+] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:5 } template IH11 { symbol [a+a+a+a+a+a+;a+] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH12 { symbol [a b+c+d c-b-;d c-b-a] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH13 { symbol [a b+c+ d c-b-;d b+c+a] topology 3^6 aspects 1,1r colouring 3 (0 1) (2 0 1) (0 1 2) rules aspect 1r 1:1 translate T1 1:0 translate T2 1r:5 } template IH14 { symbol [a+b+c+c-b-a-;c-b-a-] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:5 } template IH15 { symbol [a+b+c+c-b-a-;a+b-c+] topology 3^6 aspects 1,2 colouring 3 (0 1) (2 0 1) (0 1 2) rules aspect 2 1:0 translate T1 1:1 translate T2 2:2 } template IH16 { symbol [a+b+c+c-b-a-;a-c+b+] topology 3^6 aspects 1,2,3 colouring 3 (0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 1:5 translate T1 2:4 translate T2 2:2 } template IH17 { symbol [a b+b-a b+b-;a b+] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH18 { symbol [a b a b a b;b a] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } // IH19 is only representable with marked templates. template IH20 { symbol [a a a a a a;a] topology 3^6 aspects 1 colouring 3 (0) (1 2 0) (2 0 1) rules translate T1 1:0 translate T2 1:1 } template IH21 { // The incidence symbol here is rotated WRT the book to account // for the inconsistency with the topology type. symbol [a+b+c+d+e+;a+c+b+e+d+] topology 3^4.6 aspects 1,2,3,4,5,6 colouring 3 (0 1 0 1 0 1) (1 2 0) (2 0 1) rules aspect 2 1:4 aspect 3 2:4 aspect 4 3:4 aspect 5 4:4 aspect 6 5:4 translate T1 3:1 translate T2 4:0 } template IH22 { // This one was rotated too. symbol [a+b+c+d+e+;b-a-e+d-c+] topology 3^3.4^2 aspects 1,1r colouring 3 (0 1) (2 0 1) (0 1 2) rules aspect 1r 1:3 translate T1 1r:0 translate T2 1r:1 } template IH23 { symbol [a+b+c+d+e+;a+b+e+d+c+] topology 3^3.4^2 aspects 1,2 colouring 3 (0 1) (1 2 0) (2 0 1) rules aspect 2 1:0 translate T1 1:2 translate T2 2:3 } template IH24 { symbol [a+b+c+d+e+;a+b+e+d-c+] topology 3^3.4^2 aspects 1,2,1r,2r colouring 3 (0 1 2 0) (2 0 1) (1 2 0) rules aspect 2 1:0 aspect 1r 2r:0 aspect 2r 2:3 translate T1 1:4 translate T2 1r:3 } template IH25 { symbol [a+b+c+d+e+;b-a-e+d+c+] topology 3^3.4^2 aspects 1,2,1r,2r colouring 3 (0 1 2 0) (2 0 1) (0 1 2) rules aspect 2 1:3 aspect 1r 2r:3 aspect 2r 2:1 translate T1 1:2 translate T2 1r:1 } template IH26 { symbol [a+a-b+c b-;a+b-c] topology 3^3.4^2 aspects 1,2 colouring 3 (0 1) (1 2 0) (0 1 2) rules aspect 2 1:3 translate T1 1:2 translate T2 2:0 } template IH27 { symbol [a+b+c+d+e+;a+d-e-b-c-] topology 3^2.4.3.4 aspects 1,2,1r,2r colouring 3 (0 1 2 2) (0 1 2) (1 2 0) rules aspect 2 1:0 aspect 1r 1:1 aspect 2r 2:1 translate T1 2r:4 translate T2 1r:1 } template IH28 { symbol [a+b+c+d+e+;a+c+b+e+d+] topology 3^2.4.3.4 aspects 1,2,3,4 // After reading G.C. Shephard's "What Escher Might Have Done" in // _M.C. Escher: Art and Science_, I realized something interesting: // this colouring isn't perfect. The paper doesn't claim that all // our colourings are perfect, but I was operating under the tacit // assumption that they were. So it's somewhat ambiguous whether // Escher would have used this colouring in one of his tilings. // The fish on the cover of _Visions of Symmetry_ are of this tiling // type and use a colouring with four colours. In fact, Shephard // shows that a perfect 3-colouring of this tiling type cannot exist. colouring 3 (0 1 2 0) (1 2 0) (0 1 2) rules aspect 2 1:0 aspect 3 2:2 aspect 4 2:3 translate T1 4:3 translate T2 3:2 } template IH29 { symbol [a b+c+c-b-;a c+b+] topology 3^2.4.3.4 aspects 1,2,3,4 colouring 3 (0 1 2 2) (1 2 0) (0 1 2) rules aspect 2 1:0 aspect 3 1:1 aspect 4 1:4 translate T1 3:4 translate T2 4:4 } template IH30 { symbol [a+b+c+d+;d+b-c-a+] topology 3.4.6.4 aspects 1,2,3,1r,2r,3r colouring 3 (0 1 2 1 2 0) (1 2 0) (2 0 1) rules aspect 2 1:0 aspect 3 2:0 aspect 1r 1:1 aspect 2r 1r:0 aspect 3r 2r:0 translate T1 3r:2 translate T2 3:2,1 } template IH31 { symbol [a+b+c+d+;d+c+b+a+] topology 3.4.6.4 aspects 1,2,3,4,5,6 // This tiling has a simpler but visually less appealing alternate // colouring: // colouring 3 (0 1 0 1 0 1) (2 0 1) (1 2 0) // I prefer this colouring: colouring 3 (0 1 2 0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:1 aspect 3 2:1 aspect 4 3:1 aspect 5 4:1 aspect 6 5:1 translate T1 3:0 translate T2 5:3 } template IH32 { symbol [a+b+b-a-;a-b-] topology 3.4.6.4 aspects 1,2,3,4,5,6 colouring 3 (0 2 1 1 0 2) (1 2 0) (2 0 1) rules aspect 2 1:3 aspect 3 2:3 aspect 4 1:1 aspect 5 4:3 aspect 6 5:3 translate T1 5:2 translate T2 2:2,2 } template IH33 { symbol [a+b+c+d+;d+c+b+a+] topology 3.6.3.6 aspects 1,2,3 colouring 3 (0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 2:0 translate T1 2:1 translate T2 3:2 } template IH34 { symbol [a+b+a+b+;b+a+] topology 3.6.3.6 aspects 1,2,3 colouring 3 (0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 2:0 translate T1 2:3 translate T2 3:0 } // IH35 can only be realized with marked templates. template IH36 { symbol [a+a-b+b-;b-a-] topology 3.6.3.6 aspects 1,2,3 colouring 3 (0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 1:3 translate T1 2:0 translate T2 3:2 } template IH37 { symbol [a+a-a+a-;a-] topology 3.6.3.6 aspects 1,2,3 colouring 3 (0 1 2) (0 1 2) (0 1 2) rules aspect 2 1:0 aspect 3 2:3 translate T1 2:2 translate T2 3:1 } template IH38 { symbol [a+b+c+;c+b-a+] topology 3.12^2 aspects 1,2,3,1r,2r,3r colouring 3 (0 2 1 1 0 2) (1 2 0) (2 0 1) rules aspect 2 1:0 aspect 3 2:0 aspect 1r 3r:0 aspect 2r 2:1 aspect 3r 2r:0 translate T1 3r:1 translate T2 3:1,2,1 } template IH39 { symbol [a+b+c+;c+b+a+] topology 3.12^2 aspects 1,2,3,4,5,6 colouring 3 (0 2 1 0 1 2) (2 0 1) (1 2 0) rules aspect 2 1:0 aspect 3 2:0 aspect 4 2:1 aspect 5 4:0 aspect 6 5:0 translate T1 3:1,0,1 translate T2 6:1 } template IH40 { symbol [a+b a-;a-b] topology 3.12^2 aspects 1,2,3,4,5,6 colouring 3 (1 0 2 2 0 1) (1 2 0) (2 0 1) rules aspect 2 1:2 aspect 3 2:2 aspect 4 2:1 aspect 5 4:2 aspect 6 5:2 translate T1 6:1 translate T2 5:1,2 } template IH41 { symbol [a+b+c+d+;c+d+a+b+] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } template IH42 { symbol [a+b+c+d+;c+b-a+d-] topology 4^4 aspects 1,1r colouring 2 (0 1) (1 0) (0 1) rules aspect 1r 1:1 translate T1 1:0 translate T2 1r:3 } template IH43 { symbol [a+b+c+d+;c-d+a-b+] topology 4^4 aspects 1,1r colouring 2 (0 1) (1 0) (0 1) rules aspect 1r 1:0 translate T1 1:1 translate T2 1r:0 } template IH44 { symbol [a+b+c+d+;b-a-d-c-] topology 4^4 aspects 1,1r colouring 2 (0 1) (0 1) (0 1) rules aspect 1r 1:0 translate T1 1r:0 translate T2 1r:2 } template IH45 { symbol [a+b+c+d+;c-b-a-d-] topology 4^4 aspects 1,1r colouring 2 (0 1) (0 1) (0 1) rules aspect 1r 1:0 translate T1 1r:0 translate T2 1r:1 } template IH46 { symbol [a+b+c+d+;a+b+c+d+] topology 4^4 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:2 translate T2 2:1 } template IH47 { symbol [a+b+c+d+;c+b+a+d+] topology 4^4 aspects 1,2 colouring 2 (0 1) (1 0) (0 1) rules aspect 2 1:1 translate T1 1:0 translate T2 2:3 } template IH49 { symbol [a+b+c+d+;a-b+c-d+] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 1:1 aspect 1r 1:0 aspect 2r 2:0 translate T1 1r:2 translate T2 2:3 } template IH50 { symbol [a+b+c+d+;c+b-a+d+] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (1 0) rules aspect 2 1:3 aspect 1r 1:1 aspect 2r 2:1 translate T1 2r:3,1 translate T2 1:0 } template IH51 { symbol [a+b+c+d+;c-b+a-d+] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 1:3 aspect 1r 1:0 aspect 2r 2:2 translate T1 1r:0 translate T2 2:1 } template IH52 { symbol [a+b+c+d+;c-d-a-b-] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 0 1 1) (0 1) (0 1) rules aspect 2 1r:3 aspect 1r 1:0 aspect 2r 2:0 translate T1 2r:1 translate T2 1r:0 } template IH53 { symbol [a+b+c+d+;b-a-c+d+] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 1:2 aspect 1r 1:0 aspect 2r 2:0 translate T1 2:3 translate T2 1:3,0,2,1 } template IH54 { symbol [a+b+c+d+;a-b-c-d+] topology 4^4 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 1:3 aspect 1r 1:0 aspect 2r 2:2 translate T1 1r:2 translate T2 2:1 } template IH55 { symbol [a+b+c+d+;b+a+d+c+] topology 4^4 aspects 1,2,3,4 colouring 2 (0 1 0 1) (0 1) (0 1) rules aspect 2 1:1 aspect 3 2:1 aspect 4 3:1 translate T1 2:2 translate T2 4:3 } template IH56 { symbol [a+b+c+d+;b+a+c-d-] topology 4^4 aspects 1,2,3,4,1r,2r,3r,4r colouring 2 (0 1 0 1 1 0 1 0) (0 1) (0 1) rules aspect 2 1:1 aspect 3 2:1 aspect 4 3:1 aspect 1r 2r:0 aspect 2r 2:2 aspect 3r 2r:1 aspect 4r 3r:1 translate T1 1r:3 translate T2 2r:3,1 } template IH57 { symbol [a+b+a+b+;a+b+] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } template IH58 { symbol [a+b+a+b+;a-b+] topology 4^4 aspects 1,1r colouring 2 (0 1) (1 0) (0 1) rules aspect 1r 1:0 translate T1 1:1 translate T2 1r:2 } template IH59 { symbol [a+b+a+b+;b-a-] topology 4^4 aspects 1,1r colouring 2 (0 1) (0 1) (0 1) rules aspect 1r 1:0 translate T1 1r:2 translate T2 1r:3 } // IH60 can only be realized with marked templates. template IH61 { symbol [a+b+a+b+;b+a+] topology 4^4 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:0 translate T2 2:2 } template IH62 { symbol [a+a+a+a+;a+] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } // IH63 can only be realized with marked templates. template IH64 { symbol [a b+ c b-;c b- a] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } // IH65 can only be realized with marked templates. template IH66 { symbol [a b+ c b-;c b+ a] topology 4^4 aspects 1,2 colouring 2 (0 1) (1 0) (0 1) rules aspect 2 1:1 translate T1 1:0 translate T2 2:3 } template IH67 { symbol [a b+ c b-;a b+ c] topology 4^4 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 } template IH68 { symbol [a+b+b-a-;b-a-] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } template IH69 { symbol [a+b+b-a-;a+b+] topology 4^4 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 } // IH70 can only be realized with marked templates. template IH71 { symbol [a+b+b-a-;b+a+] topology 4^4 aspects 1,2,3,4 colouring 2 (0 1 0 1) (0 1) (0 1) rules aspect 2 1:0 aspect 3 2:0 aspect 4 3:0 translate T1 4:2 translate T2 2:3 } template IH72 { symbol [abab;ab] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } template IH73 { symbol [a b a b;b a] topology 4^4 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:0 translate T2 2:2 } template IH74 { symbol [a+a-a+a-;a+] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } // IH75 can only be realized with marked templates. template IH76 { symbol [a a a a;a] topology 4^4 aspects 1 colouring 2 (0) (1 0) (1 0) rules translate T1 1:0 translate T2 1:1 } template IH77 { symbol [a+b+c+;a-b-c-] topology 4.6.12 aspects 1,2,3,4,5,6,1r,2r,3r,4r,5r,6r colouring 2 (0 0 0 0 0 0 1 1 1 1 1 1) (0 1) (0 1) rules aspect 2 1r:1 aspect 3 2r:1 aspect 4 3r:1 aspect 5 4r:1 aspect 6 5r:1 aspect 1r 1:2 aspect 2r 2:2 aspect 3r 3:2 aspect 4r 4:2 aspect 5r 5:2 aspect 6r 6:2 translate T1 4r:0 translate T2 3:0,1 } template IH78 { symbol [a+b+c+;a-b+c-] topology 4.8^2 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (1 0) rules aspect 2 1:1 aspect 1r 2r:1 aspect 2r 2:2 translate T1 1r:2 translate T2 2r:0 } template IH79 { symbol [a+b+c+;c+b+a+] topology 4.8^2 aspects 1,2,3,4 colouring 2 (0 1 0 1) (1 0) (1 0) rules aspect 2 1:0 aspect 3 2:0 aspect 4 3:0 translate T1 3:1 translate T2 2:1,0 } // IH80 can only be realized with marked templates. template IH81 { symbol [a+b+c+;c+b-a+] topology 4.8^2 aspects 1,2,3,4,1r,2r,3r,4r colouring 2 (0 1 0 1 1 0 1 0) (0 1) (0 1) rules aspect 2 1:0 aspect 3 2:0 aspect 4 3:0 aspect 1r 4r:0 aspect 2r 2:1 aspect 3r 2r:0 aspect 4r 3r:0 translate T1 3r:1 translate T2 4r:1,0 } template IH82 { symbol [a+b a-;a-b] topology 4.8^2 aspects 1,2,3,4 colouring 2 (0 1 0 1) (1 0) (1 0) rules aspect 2 1:2 aspect 3 2:2 aspect 4 3:2 translate T1 3:1 translate T2 2:1,2 } template IH83 { symbol [a+b+c+;b-a-c-] topology 6^3 aspects 1,1r colouring 2 (0 1) (0 1) (0 1) rules aspect 1r 1:2 translate T1 1r:0 translate T2 1r:1 } template IH84 { symbol [a+b+c+;a+b+c+] topology 6^3 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 } template IH85 { symbol [a+b+c+;a-b+c+] topology 6^3 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 1:1 aspect 1r 2r:1 aspect 2r 2:0 translate T1 2:2 translate T2 1r:0 } template IH86 { symbol [a+b+c+;b-a-c+] topology 6^3 aspects 1,2,1r,2r colouring 2 (0 1 1 0) (0 1) (0 1) rules aspect 2 2r:0 aspect 1r 1:0 aspect 2r 1r:2 translate T1 1r:0 translate T2 2:2 } // IH87 can only be realized with marked templates. template IH88 { symbol [a+b+c+;b+a+c+] topology 6^3 aspects 1,2,3,4,5,6 colouring 2 (0 1 0 1 0 1) (0 1) (0 1) rules aspect 2 1:0 aspect 3 2:0 aspect 4 3:0 aspect 5 4:0 aspect 6 5:0 translate T1 4:2 translate T2 5:2,1 } // IH89 can only be realized with marked templates. template IH90 { symbol [a+a+a+;a+] topology 6^3 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 } template IH91 { symbol [a b+b-;a b+] topology 6^3 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 } // IH92 can only be realized with marked templates. template IH93 { symbol [a a a;a] topology 6^3 aspects 1,2 colouring 2 (0 1) (0 1) (0 1) rules aspect 2 1:0 translate T1 2:1 translate T2 2:2 }