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DEMOvectors

Geometric Algebra

• The geometric product ab does it all

• Algebraically, it is

– linear

– associative

– non-commutative

– invertible

• We will visualize these properties

Properties

Geometry Algebra
a ∧ b spanning anti-commutation 1

2
(ab− ba)

a · b complementation commutation 1
2
(ab+ ba)

perpendicularity

orthogonalization invertibility

rotation exponentiation
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Derived products

• x · a = symmetric part of x a

x · a ≡ 1

2
(xa+ ax)

• x ∧ a = anti-symmetric part of x a

x ∧ a ≡ 1

2
(xa− ax)

• Decomposition of geometric product

xa = x · a+ x ∧ a

Outer product: spanning

a ∧ b = −b ∧ a
• dimensionality

• attitude

• sense

• magnitude

DEMOouter

• Given a, all x with same x ∧ a are on a line

• Extension: a ∧ b ∧ c is a volume

• Vectors, bivectors, trivectors, etc.

All elements of geometric algebra

• dim(A ∧B) = dim(A) + dim(B)
(but beware of overlap)
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Inner product: perpendicularity

a · b = b · a
• A ·B is part of B perpendicular to A

DEMOinner

• Given a, all x with same x · a are on a hyperplane

• dim(A ·B) = dim(B) — dim(A)

Parallel Component

Consider x = x⊥ + x|| relative to some vector a

• Geometrically: x|| is part of x parallel to a

• Classically: x|| · a = x · a and x|| ∧ a = 0

• Geometric Algebra: add them and divide

x||a = x|| · a+ x|| ∧ a = x|| · a = x · a

Solvable: x|| = (x · a)/a

Perpendicular Component

• Geometrically: x⊥ is part of x perpendicular to a

• Classically: x⊥ ∧ a = x ∧ a and x⊥ · a = 0

• Geometric Algebra: x⊥a = x ∧ a
Solvable: x⊥ = (x ∧ a)/a

DEMOproj
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Geometric Product is Invertible

• xa = x · a+ x ∧ a is invertible

DEMOinvertible

x = (xa)/a = (x · a)/a+ (x ∧ a)/a

• Can divide by vectors, bivectors

Rotations

• Many ways to do rotations in geometric algebra

• Given x and plane I containing x (so x ∧ I = 0)

Rotate x in the plane

• Coordinate free view

Rx = bit of x and bit of perpendicular to x

(amounts depend on rotation angle)

• Perpendicular to x in I plane (anti-clockwise) is

x · I = xI = −Ix

DEMOrotdefinition

• Rotation as post-multiply:

Rx = x(cosφ) + (xI)(sinφ) = x(cosφ+ I sinφ)

• Rotation as pre-multiply:

Rx = (cosφ) + (sinφ)(−Ix) = (cosφ− I sinφ)x
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Complex Rotations

• Related to complex numbers

II = −1

but I has a geometrical meaning since xI = −Ix

• We can write cosφ+ I sinφ = eIφ

• Each rotation plane has own bivector I

so many “complex numbers” in space

• Bivector basis (i = e2 ∧ e3, j = e3 ∧ e1, k = e1 ∧ e2)

I = αi + βj + γk

Rotations in 3D

• Pick rotation plane I and (possibly non-coplanar) vector x

x = x⊥ + x||

Would like to get RIφx = x⊥ + RIφx||.

• x|| rotation:

either e−Iφx|| or x||e
Iφ (or even e−Iφ/2x||e

Iφ/2)

• x⊥ rotation:

x⊥e
Iφ = cosφx⊥︸ ︷︷ ︸

vector

+ sinφ (x⊥I)︸ ︷︷ ︸
trivector

e−Iφx⊥ = cosφx⊥ − sinφ (Ix⊥)

(e−Iφx⊥)eIφ = cosφx⊥e
Iφ − sinφ Ix⊥e

Iφ

= cos2 φx⊥ + cosφ sinφx⊥I

− sinφ cosφ Ix⊥ − sin2 φ Ix⊥I

= cos2 φx⊥ − sin2φ IIx⊥

= (cos2 φ+ sin2 φ)x⊥

= x⊥

• Bottom line:

e−Iφ/2xeIφ/2 = x⊥ + RIφx|| = RIφx
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Rotors

DEMOrotor

• So R−Iφx = e−Iφ/2xeIφ/2

• Further,

R−IφX = e−Iφ/2XeIφ/2 = RXR−1

where X is any geometric object (vector, plane, volume, etc.)

• R = e−Iφ/2 is called a rotor

R−1 = eIφ/2 is called the inverse rotor

Quaternions

• A rotor is a (unit) quaternion

• i, j, k are not complex numbers, they are

– bivectors (not vectors!)

– rotation operators for the coordinate planes

– basis for planes of rotation

– an intrinsic part of the algebra
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Composing Rotations

Composition of rotations through multiplication

(R2 ◦ R1)x = R2(R1xR
−1
1 )R−1

2 = (R2R1)x(R2R1)−1

• R2R1 is again a rotor.

It represents the rotation R2 ◦ R1

• Note: use geometric product to multiply rotors/quaternions

No new product is needed

Interpolation

From rotor RA to rotor RB in n similar steps:

RnRA = RB ⇐⇒ R = (RB/RA)1/n

So
R = (eIφ/2)1/n = eIφ/(2n)

DEMOinterpolation
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All you need is blades

• ‘Vector space model’: k-blades (made by ‘∧’) are quantitative
oriented k-dimensional subspace elements

• But we would like to represent ‘offset’ subspaces.

• This leads to the affine model (for flat subspaces) and to the
homogeneous model (spheres as subspaces).

Dualization

• Im is the pseudoscalar of m-space (highest order blade,
volume element)

• A∗ is part of Im-space perpendicular to A:

A∗ ≡ A · Im

• Example: bivector B, then B∗ = −n, normal vector

x

x • I
3

(x • I
3
) • I

3

DEMOdual
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Cross product and normal vectors

• Cross product in 3D dual of outer product:

a× b ≡ −(a ∧ b) · I3

• Under a linear transformation f

f(a× b) = f̄−1(a)× f̄−1(b) det f

f(a ∧ b) = f(a) ∧ f(b)

• Use ∧ instead of ×

Meet

• Intersection operation is ‘dual of spanning’ in their common
space: (A ∩B)∗ = B∗ ∧ A∗. This gives

A ∩B = B∗ · A

• This is called the meet of A and B.

DEMOmeetplanes

• Well-known special case: meet of two planes in I3,

A ∩B = B∗ ·A = A∗ ×B∗ = nA × nB

but above formula applies to any intersection.
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Affine model

• The framework for ‘homogeneous coordinates’ and ‘Plücker
coordinates’

• Get affine/homogeneous spaces by using one dimension for
“point at zero”

– Point: P = e+ p such that e · p = 0

– Vector: v such that e · v = 0

– Tangent plane: bivector B such that e ·B = 0

P

P

p

0

e

DEMOaffine
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Affine representation

• Line: point P , point Q

L = P ∧Q = (e+ p) ∧ (e+ q) = e ∧ (q− p) + (p ∧ q)

• Line: direction v, point P

L = P ∧ v = ev + p ∧ v

• Plane: ‘2-direction’ bivector B, point P

Π = P ∧B = eB + p ∧B

Composite objects: use ‘∧’, ‘·’, ‘∩’ and dual.
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Plücker Revisited

GA Plücker

point p + e (p, 1)

line e ∧ (q− p) + p ∧ q
= (p− q)e+ (p× q)I3 (p− q,p× q)

plane eB + p ∧B ?

dual plane B∗ − (p ·B∗)e
= −(n− (p · n)e) [n,−p · n]

GA ‘labels’ 1, e and I3 determine multiplication and interpretation
rules automatically

Affine representation: examples

• Example 1: Intersection of line L = ue+ vI3 and (dual) plane
Π∗ = n− δe is:

Π ∩ L = Π∗ · L = −(n · u)e− (v × n− δu)

The ‘labels’ tell us that this is a point at location:

v × n− δu
n · u

• Example 2: Distance of point P to plane Π∗:

Π ∩ P = Π∗ · P = δ − n · p

Scalar outcome: oriented distance.

• Example 3: Intersecting lines DEMOaffinemeet
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Homogeneous Model

• Points are vectors p, q

• Distances directly as p · q = −1
2
(p− q)2

• Special point at infinity e∞: (e∞)2 = 0, e∞ · p = 1

• Altogether (m+ 2)-space representing Em

• Blades represent k-spheres: 3-sphere p ∧ q ∧ r ∧ s

• Flats are spheres through infinity: line e∞ ∧ p ∧ q

• Very compact intersections, reflections, etc.

Spheres and planes

• Sphere (c, ρ) is dually the vector σ = c+ 1
2
ρ2e∞

• Plane (n, δ) is π = n− δe∞
• Sphere σ perpendicular to plane π obeys π · σ = 0.

• Intersect two spheres:

σ1 ∧ σ2 =
σ1 ∧ σ2

σ2 − σ1︸ ︷︷ ︸
perp. sphere

∧ (σ2 − σ1)︸ ︷︷ ︸
int. plane

• Reflect line ` in plane π: −π ` π.



14 Leo Dorst and Stephen Mann

Computational issues

• Actual geometrical computations like Plücker coordinates, so
rather efficient.

• However, potential basis for elements much bigger: 2n+2 for
homogeneous model of n-space (i.e. 32 for 3-space).

• All products are linear, so expressible as matrix multiply:
a ∧ b → [a∧][b], for 32× 32 matrices. Some reducing tricks
possible (and so done in GABLE), but too expensive in time
and space.

• Should make efficient coding of only the necessary elements
involved in a computation. Gives Plücker efficiency for
spheres.

GABLE is freeware

For a free copy of GABLE and a geometric algebra tutorial, see
http://www.science.uva.nl/~leo/clifford/gable.html

http://www.cgl.uwaterloo.ca/~smann/GABLE/


