Illustration of GA using GABLE

SIGGRAPH 2001, Course #53

Leo Dorst
University of Amsterdam
Amsterdam, The Netherlands
leo@science.uva.nl

Stephen Mann
University of Waterloo
Waterloo, ON, Canada
smann@cgl.uwaterloo.ca

DEMOvectors

Geometric Algebra

- ullet The geometric product ab does it all
- Algebraically, it is
 - linear
 - associative
 - non-commutative
 - invertible
- We will visualize these properties

Properties

Geometry	Algebra
$a \wedge b$ spanning	anti-commutation $\frac{1}{2}(ab-ba)$
$a \cdot b$ complementation perpendicularity	commutation $\frac{1}{2}(ab + ba)$
orthogonalization	invertibility
rotation	exponentiation

Derived products

• $x \cdot a = \text{symmetric part of } x a$

$$x \cdot a \equiv \frac{1}{2}(xa + ax)$$

• $x \wedge a =$ anti-symmetric part of x a

$$x \wedge a \equiv \frac{1}{2}(xa - ax)$$

• Decomposition of geometric product

$$xa = x \cdot a + x \wedge a$$

Outer product: spanning

$$a \wedge b = -b \wedge a$$

- dimensionality
- attitude
- sense
- magnitude

DEMOouter

Outer product

- Given a, all x with same $x \wedge a$ are on a line
- Extension: $a \wedge b \wedge c$ is a volume
- Vectors, bivectors, trivectors, etc.
 All elements of geometric algebra
- $dim(A \wedge B) = dim(A) + dim(B)$ (but beware of overlap)

Inner product: perpendicularity

$$a \cdot b = b \cdot a$$

ullet $A \cdot B$ is part of B perpendicular to A

- ullet Given a, all x with same $x \cdot a$ are on a hyperplane
- $\bullet \dim(A \cdot B) = \dim(B) \dim(A)$

Parallel Component

Consider $x = x_{\perp} + x_{||}$ relative to some vector a

- ullet Geometrically: $x_{||}$ is part of x parallel to a
- Classically: $x_{||} \cdot a = x \cdot a$ and $x_{||} \wedge a = 0$
- Geometric Algebra: add them and divide

$$x_{||}a = x_{||} \cdot a + x_{||} \wedge a = x_{||} \cdot a = x \cdot a$$

Solvable: $x_{||} = (x \cdot a)/a$

Perpendicular Component

- ullet Geometrically: x_{\perp} is part of x perpendicular to a
- Classically: $x_{\perp} \wedge a = x \wedge a$ and $x_{\perp} \cdot a = 0$
- Geometric Algebra: $x_{\perp}a = x \wedge a$

Solvable: $x_{\perp} = (x \wedge a)/a$

DEMOproj

Geometric Product is Invertible

• $xa = x \cdot a + x \wedge a$ is invertible

DEMOinvertible

$$x = (xa)/a = (x \cdot a)/a + (x \wedge a)/a$$

Can divide by vectors, bivectors

Rotations

- Many ways to do rotations in geometric algebra
- Given x and plane I containing x (so $x \wedge I = 0$) Rotate x in the plane
- Coordinate free view

Rx = bit of x and bit of perpendicular to x (amounts depend on rotation angle)

ullet Perpendicular to x in I plane (anti-clockwise) is

$$x \cdot I = xI = -Ix$$

DEMOrotdefinition

Rotation as post-multiply:

$$Rx = x(\cos\phi) + (xI)(\sin\phi) = x(\cos\phi + I\sin\phi)$$

• Rotation as pre-multiply:

$$Rx = (\cos \phi) + (\sin \phi)(-Ix) = (\cos \phi - I\sin \phi)x$$

Complex Rotations

Related to complex numbers

$$II = -1$$

but I has a geometrical meaning since xI = -Ix

- We can write $\cos \phi + I \sin \phi = e^{I\phi}$
- ullet Each rotation plane has own bivector I so many "complex numbers" in space
- Bivector basis ($\mathbf{i}=e_2\wedge e_3$, $\mathbf{j}=e_3\wedge e_1$, $\mathbf{k}=e_1\wedge e_2$) $I=\alpha\mathbf{i}+\beta\mathbf{j}+\gamma\mathbf{k}$

Rotations in 3D

ullet Pick rotation plane I and (possibly non-coplanar) vector x

$$x = x_{\perp} + x_{||}$$

Would like to get $R_{I\phi}x = x_{\perp} + R_{I\phi}x_{||}$.

• $x_{||}$ rotation:

either $e^{-I\phi}x_{||}$ or $x_{||}e^{I\phi}$ (or even $e^{-I\phi/2}x_{||}e^{I\phi/2}$)

• x_{\perp} rotation:

$$x_{\perp}e^{I\phi} = \underbrace{\cos\phi \, x_{\perp}}_{vector} + \underbrace{\sin\phi \, (x_{\perp}I)}_{trivector}$$

$$e^{-I\phi}x_{\perp} = \cos\phi \, x_{\perp} - \sin\phi \, (Ix_{\perp})$$

Combines in just the right way so that

$$e^{-I\phi/2}x_{\perp}e^{I\phi/2} = x_{\perp}$$

Bottom line:

$$e^{-I\phi/2}xe^{I\phi/2} = x_{\perp} + R_{I\phi}x_{||} = R_{I\phi}x$$

Rotors

DEMOrotor

- $\bullet \text{ So } \mathsf{R}_{-I\phi}x = e^{-I\phi/2}xe^{I\phi/2}$
- Further,

$$R_{-I\phi}X = e^{-I\phi/2}Xe^{I\phi/2} = RXR^{-1}$$

where X is any geometric object (vector, plane, volume, etc.)

• $R=e^{-I\phi/2}$ is called a rotor $R^{-1}=e^{I\phi/2} \mbox{ is called the } inverse \ rotor$

Quaternions

- A rotor is a (unit) quaternion
- i, j, k are not complex numbers, they are
 - bivectors (not vectors!)
 - rotation operators for the coordinate planes
 - basis for planes of rotation
 - an intrinsic part of the algebra

Composing Rotations

Composition of rotations through multiplication

$$(R_2 \circ R_1)x = R_2(R_1xR_1^{-1})R_2^{-1} = (R_2R_1)x(R_2R_1)^{-1}$$

• R_2R_1 is again a rotor.

It represents the rotation $R_2 \circ R_1$

 Note: use geometric product to multiply rotors/quaternions

No new product is needed

Interpolation

From rotor R_A to rotor R_B in n similar steps:

$$R^n R_A = R_B \iff R = (R_B/R_A)^{1/n}$$

So

$$R = (e^{I\phi/2})^{1/n} = e^{I\phi/(2n)}$$

DEMOinterpolation

Illustration of GA using GABLE

SIGGRAPH 2001, Course #53

Leo Dorst
University of Amsterdam
Amsterdam, The Netherlands
leo@science.uva.nl

Stephen Mann
University of Waterloo
Waterloo, ON, Canada
smann@cgl.uwaterloo.ca

All you need is blades

- 'Vector space model': k-blades (made by ' \wedge ') are quantitative oriented k-dimensional subspace elements
- But we would like to represent 'offset' subspaces.
- This leads to the affine model (for flat subspaces) and to the homogeneous model (spheres as subspaces).

Dualization

- I_m is the *pseudoscalar* of m-space (highest order blade, volume element)
- A^* is part of \mathbf{I}_m -space perpendicular to A:

$$A^* \equiv A \cdot \mathbf{I}_m$$

ullet Example: bivector ${f B}$, then ${f B}^*=-{f n}$, normal vector

Cross product and normal vectors

• Cross product in 3D dual of outer product:

$$a \times b \equiv -(a \wedge b) \cdot \mathbf{I}_3$$

ullet Under a linear transformation f

$$f(a \times b) = \overline{f}^{-1}(a) \times \overline{f}^{-1}(b) \det f$$

 $f(a \wedge b) = f(a) \wedge f(b)$

Use ∧ instead of ×

Meet

• Intersection operation is 'dual of spanning' in their common space: $(A \cap B)^* = B^* \wedge A^*$. This gives

$$A \cap B = B^* \cdot A$$

ullet This is called the meet of A and B.

DEMOmeetplanes

ullet Well-known special case: meet of two planes in ${f I}_3$,

$$A \cap B = B^* \cdot A = A^* \times B^* = n_A \times n_B$$

but above formula applies to any intersection.

Affine model

- The framework for 'homogeneous coordinates' and 'Plücker coordinates'
- Get affine/homogeneous spaces by using one dimension for "point at zero"
 - Point: P = e + p such that $e \cdot p = 0$
 - **Vector:** v such that $e \cdot v = 0$
 - Tangent plane: bivector B such that $e \cdot B = 0$

Affine representation

• Line: point P, point Q

$$L = P \wedge Q = (e + \mathbf{p}) \wedge (e + \mathbf{q}) = e \wedge (\mathbf{q} - \mathbf{p}) + (\mathbf{p} \wedge \mathbf{q})$$

• **Line:** direction v, point P

$$L = P \wedge \mathbf{v} = e \,\mathbf{v} + \mathbf{p} \wedge \mathbf{v}$$

• Plane: '2-direction' bivector B, point P

$$\Pi = P \wedge \mathbf{B} = e \mathbf{B} + \mathbf{p} \wedge \mathbf{B}$$

Composite objects: use ' \wedge ', ' \cdot ', ' \cap ' and dual.

Plücker Revisited

	GA	Plücker
point	$\mathbf{p} + e$	(p, 1)
line	$e \wedge (\mathbf{q} - \mathbf{p}) + \mathbf{p} \wedge \mathbf{q}$	
	$e \wedge (\mathbf{q} - \mathbf{p}) + \mathbf{p} \wedge \mathbf{q}$ = $(\mathbf{p} - \mathbf{q})e + (\mathbf{p} \times \mathbf{q})\mathbf{I}_3$	$(\mathbf{p}-\mathbf{q},\mathbf{p} imes\mathbf{q})$
plane	$e\mathbf{B} + \mathbf{p} \wedge \mathbf{B}$?
dual plane	$\mathbf{B}^* - (\mathbf{p} \cdot \mathbf{B}^*)e$	
	$\mathbf{B}^* - (\mathbf{p} \cdot \mathbf{B}^*)e$ $= -(\mathbf{n} - (\mathbf{p} \cdot \mathbf{n})e)$	$ig [\mathbf{n}, -\mathbf{p} \cdot \mathbf{n}]$

GA 'labels' 1, $\it e$ and $\it I_3$ determine multiplication and interpretation rules automatically

Affine representation: examples

• Example 1: Intersection of line $L = \mathbf{u}e + \mathbf{v}\mathbf{I}_3$ and (dual) plane $\Pi^* = \mathbf{n} - \delta e$ is:

$$\Pi \cap L = \Pi^* \cdot L = -(\mathbf{n} \cdot \mathbf{u})e - (\mathbf{v} \times \mathbf{n} - \delta \mathbf{u})$$

The 'labels' tell us that this is a *point* at location:

$$\frac{\mathbf{v} \times \mathbf{n} - \delta \mathbf{u}}{\mathbf{n} \cdot \mathbf{u}}$$

• Example 2: Distance of point P to plane Π^* :

$$\Pi \cap P = \Pi^* \cdot P = \delta - \mathbf{n} \cdot \mathbf{p}$$

Scalar outcome: oriented distance.

• Example 3: Intersecting lines DEMOaffinemeet

Homogeneous Model

- \bullet Points are vectors p, q
- Distances directly as $p \cdot q = -\frac{1}{2}(\mathbf{p} \mathbf{q})^2$
- Special point at infinity e_{∞} : $(e_{\infty})^2 = 0$, $e_{\infty} \cdot p = 1$
- Altogether (m+2)-space representing E^m
- Blades represent k-spheres: 3-sphere $p \land q \land r \land s$
- Flats are spheres through infinity: line $e_{\infty} \wedge p \wedge q$
- Very compact intersections, reflections, etc.

Spheres and planes

- Sphere (c, ρ) is dually the vector $\sigma = c + \frac{1}{2}\rho^2 e_{\infty}$
- Plane (\mathbf{n}, δ) is $\pi = \mathbf{n} \delta e_{\infty}$
- Sphere σ perpendicular to plane π obeys $\pi \cdot \sigma = 0$.
- Intersect two spheres:

$$\sigma_1 \wedge \sigma_2 = \underbrace{\frac{\sigma_1 \wedge \sigma_2}{\sigma_2 - \sigma_1}}_{perp. \ sphere} \wedge \underbrace{\frac{(\sigma_2 - \sigma_1)}{int. \ plane}}_{int. \ plane}$$

• Reflect line ℓ in plane π : $-\pi \ell \pi$.

Computational issues

- Actual geometrical computations like Plücker coordinates, so rather efficient.
- However, potential basis for elements much bigger: 2^{n+2} for homogeneous model of n-space (i.e. 32 for 3-space).
- All products are *linear*, so expressible as matrix multiply: $a \wedge b \rightarrow [a^{\wedge}][b]$, for 32×32 matrices. Some reducing tricks possible (and so done in GABLE), but too expensive in time and space.
- Should make efficient coding of only the necessary elements involved in a computation. Gives Plücker efficiency for spheres.

GABLE is freeware

For a free copy of GABLE and a geometric algebra tutorial, see

http://www.science.uva.nl/~leo/clifford/gable.html

http://www.cgl.uwaterloo.ca/~smann/GABLE/