Illustration of GA using GABLE

SIGGRAPH 2001, Course \#53

Leo Dorst
University of Amsterdam
Amsterdam, The Netherlands
leo@science.uva.nl
Stephen Mann University of Waterloo Waterloo, ON, Canada smann@cgl.uwaterloo.ca

[^0]
Geometric Algebra

- The geometric product $a b$ does it all
- Algebraically, it is
- linear
- associative
- non-commutative
- invertible
- We will visualize these properties

Properties

Geometry
$a \wedge b$ spanning
$a \cdot b$ complementation commutation $\frac{1}{2}(a b+b a)$ perpendicularity
orthogonalization invertibility
rotation
exponentiation

Derived products

- $x \cdot a=$ symmetric part of $x a$

$$
x \cdot a \equiv \frac{1}{2}(x a+a x)
$$

- $x \wedge a=$ anti-symmetric part of $x a$

$$
x \wedge a \equiv \frac{1}{2}(x a-a x)
$$

- Decomposition of geometric product

$$
x a=x \cdot a+x \wedge a
$$

Outer product: spanning

$$
a \wedge b=-b \wedge a
$$

- dimensionality
- attitude
- sense
- magnitude

DEMOouter

Outer product

- Given a, all x with same $x \wedge a$ are on a line
- Extension: $a \wedge b \wedge c$ is a volume
- Vectors, bivectors, trivectors, etc.

All elements of geometric algebra

- $\operatorname{dim}(A \wedge B)=\operatorname{dim}(A)+\operatorname{dim}(B)$
(but beware of overlap)

Inner product: perpendicularity

$$
a \cdot b=b \cdot a
$$

- $A \cdot B$ is part of B perpendicular to A

DEMOinner

- Given a, all x with same $x \cdot a$ are on a hyperplane
- $\operatorname{dim}(A \cdot B)=\operatorname{dim}(B)-\operatorname{dim}(A)$

Parallel Component

Consider $x=x_{\perp}+x_{\|}$relative to some vector a

- Geometrically: $x_{| |}$is part of x parallel to a
- Classically: $x_{| |} \cdot a=x \cdot a$ and $x_{| |} \wedge a=0$
- Geometric Algebra: add them and divide

$$
x_{| |} a=x_{\|} \cdot a+x_{\|} \wedge a=x_{| |} \cdot a=x \cdot a
$$

Solvable: $x_{| |}=(x \cdot a) / a$

Perpendicular Component

- Geometrically: x_{\perp} is part of x perpendicular to a
- Classically: $x_{\perp} \wedge a=x \wedge a$ and $x_{\perp} \cdot a=0$
- Geometric Algebra: $x_{\perp} a=x \wedge a$

Solvable: $x_{\perp}=(x \wedge a) / a$
DEMOproj

Geometric Product is Invertible

- $x a=x \cdot a+x \wedge a$ is invertible

DEMOinvertible

$$
x=(x a) / a=(x \cdot a) / a+(x \wedge a) / a
$$

- Can divide by vectors, bivectors

Rotations

- Many ways to do rotations in geometric algebra
- Given x and plane I containing x (so $x \wedge I=0$) Rotate x in the plane
- Coordinate free view

$$
\mathrm{R} x=\text { bit of } x \text { and bit of perpendicular to } x
$$

(amounts depend on rotation angle)

- Perpendicular to x in I plane (anti-clockwise) is

$$
x \cdot I=x I=-I x
$$

DEMOrotdefinition

- Rotation as post-multiply:

$$
\mathrm{R} x=x(\cos \phi)+(x I)(\sin \phi)=x(\cos \phi+I \sin \phi)
$$

- Rotation as pre-multiply:

$$
\mathrm{R} x=(\cos \phi)+(\sin \phi)(-I x)=(\cos \phi-I \sin \phi) x
$$

Complex Rotations

- Related to complex numbers

$$
I I=-1
$$

but I has a geometrical meaning since $x I=-I x$

- We can write $\cos \phi+I \sin \phi=e^{I \phi}$
- Each rotation plane has own bivector I
so many "complex numbers" in space
- Bivector basis ($\left.\mathbf{i}=e_{2} \wedge e_{3}, \mathbf{j}=e_{3} \wedge e_{1}, \mathbf{k}=e_{1} \wedge e_{2}\right)$

$$
I=\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}
$$

Rotations in 3D

- Pick rotation plane I and (possibly non-coplanar) vector x

$$
x=x_{\perp}+x_{\|}
$$

Would like to get $\mathrm{R}_{I \phi} x=x_{\perp}+\mathrm{R}_{I \phi} x_{\|}$.

- $x_{\|}$rotation:
either $e^{-I \phi} x_{\|}$or $x_{\|} e^{I \phi}$ (or even $e^{-I \phi / 2} x_{| |} e^{I \phi / 2}$)
- x_{\perp} rotation:

$$
\begin{gathered}
x_{\perp} e^{I \phi}=\underbrace{\cos \phi x_{\perp}}_{\text {vector }}+\underbrace{\sin \phi\left(x_{\perp} I\right)}_{\text {trivector }} \\
e^{-I \phi} x_{\perp}=\cos \phi x_{\perp}-\sin \phi\left(I x_{\perp}\right)
\end{gathered}
$$

- Combines in just the right way so that

$$
e^{-I \phi / 2} x_{\perp} e^{I \phi / 2}=x_{\perp}
$$

- Bottom line:

$$
e^{-I \phi / 2} x e^{I \phi / 2}=x_{\perp}+\mathrm{R}_{I \phi} x_{\|}=\mathrm{R}_{I \phi} x
$$

Rotors

DEMOrotor

- So $\mathrm{R}_{-I \phi} x=e^{-I \phi / 2} x e^{I \phi / 2}$
- Further,

$$
\mathrm{R}_{-I \phi} X=e^{-I \phi / 2} X e^{I \phi / 2}=R X R^{-1}
$$

where X is any geometric object (vector, plane, volume, etc.)

- $R=e^{-I \phi / 2}$ is called a rotor

$$
R^{-1}=e^{I \phi / 2} \text { is called the inverse rotor }
$$

Quaternions

- A rotor is a (unit) quaternion
- i, j, k are not complex numbers, they are
- bivectors (not vectors!)
- rotation operators for the coordinate planes
- basis for planes of rotation
- an intrinsic part of the algebra

Composing Rotations

Composition of rotations through multiplication

$$
\left(\mathrm{R}_{2} \circ \mathrm{R}_{1}\right) x=R_{2}\left(R_{1} x R_{1}^{-1}\right) R_{2}^{-1}=\left(R_{2} R_{1}\right) x\left(R_{2} R_{1}\right)^{-1}
$$

- $R_{2} R_{1}$ is again a rotor.

It represents the rotation $\mathrm{R}_{2} \circ \mathrm{R}_{1}$

- Note: use geometric product to multiply rotors/quaternions

No new product is needed

Interpolation

From rotor R_{A} to rotor R_{B} in n similar steps:

$$
R^{n} R_{A}=R_{B} \quad \Longleftrightarrow \quad R=\left(R_{B} / R_{A}\right)^{1 / n}
$$

So

$$
R=\left(e^{I \phi / 2}\right)^{1 / n}=e^{I \phi /(2 n)}
$$

DEMOinterpolation

Illustration of GA using GABLE

SIGGRAPH 2001, Course \#53

Leo Dorst
University of Amsterdam
Amsterdam, The Netherlands leo@science.uva.nl

Stephen Mann University of Waterloo Waterloo, ON, Canada smann@cgl.uwaterloo.ca

All you need is blades

- 'Vector space model': k-blades (made by ' \wedge ') are quantitative oriented k-dimensional subspace elements
- But we would like to represent 'offset' subspaces.
- This leads to the affine model (for flat subspaces) and to the homogeneous model (spheres as subspaces).

Dualization

- \mathbf{I}_{m} is the pseudoscalar of m-space (highest order blade, volume element)
- A^{*} is part of \mathbf{I}_{m}-space perpendicular to A :

$$
A^{*} \equiv A \cdot \mathbf{I}_{m}
$$

- Example: bivector \mathbf{B}, then $\mathbf{B}^{*}=-\mathbf{n}$, normal vector

DEMOdual

Cross product and normal vectors

- Cross product in 3D dual of outer product:

$$
a \times b \equiv-(a \wedge b) \cdot \mathbf{I}_{3}
$$

- Under a linear transformation f

$$
\begin{aligned}
f(a \times b) & =\bar{f}^{-1}(a) \times \bar{f}^{-1}(b) \operatorname{det} f \\
f(a \wedge b) & =f(a) \wedge f(b)
\end{aligned}
$$

- Use \wedge instead of \times

Meet

- Intersection operation is 'dual of spanning' in their common space: $(A \cap B)^{*}=B^{*} \wedge A^{*}$. This gives

$$
A \cap B=B^{*} \cdot A
$$

- This is called the meet of A and B.

DEMOmeetplanes

- Well-known special case: meet of two planes in \mathbf{I}_{3},

$$
\mathbf{A} \cap \mathbf{B}=\mathbf{B}^{*} \cdot \mathbf{A}=\mathbf{A}^{*} \times \mathbf{B}^{*}=\mathbf{n}_{\mathbf{A}} \times \mathbf{n}_{\mathbf{B}}
$$

but above formula applies to any intersection.

Affine model

- The framework for 'homogeneous coordinates' and 'Plücker coordinates'
- Get affine/homogeneous spaces by using one dimension for "point at zero"
- Point: $P=e+\mathbf{p}$ such that $e \cdot \mathbf{p}=0$
- Vector: \mathbf{v} such that $e \cdot \mathbf{v}=0$
- Tangent plane: bivector \mathbf{B} such that $e \cdot \mathbf{B}=0$

DEMOaffine

Affine representation

- Line: point P, point Q

$$
L=P \wedge Q=(e+\mathbf{p}) \wedge(e+\mathbf{q})=e \wedge(\mathbf{q}-\mathbf{p})+(\mathbf{p} \wedge \mathbf{q})
$$

- Line: direction \mathbf{v}, point P

$$
L=P \wedge \mathbf{v}=e \mathbf{v}+\mathbf{p} \wedge \mathbf{v}
$$

- Plane: '2-direction’ bivector \mathbf{B}, point P

$$
\Pi=P \wedge \mathbf{B}=e \mathbf{B}+\mathbf{p} \wedge \mathbf{B}
$$

Composite objects: use ' \wedge ', ‘.', ‘ \cap ’ and dual.

Plücker Revisited

	GA	Plücker
point	$\mathbf{p + e}$	$(\mathbf{p}, \mathbf{1})$
line	$e \wedge(\mathbf{q}-\mathbf{p})+\mathbf{p} \wedge \mathbf{q}$ $=(\mathbf{p}-\mathbf{q}) e+(\mathbf{p} \times \mathbf{q}) \mathbf{I}_{3}$	$(\mathbf{p}-\mathbf{q}, \mathbf{p} \times \mathbf{q})$

GA 'labels' 1,e and \mathbf{I}_{3} determine multiplication and interpretation rules automatically

Affine representation: examples

- Example 1: Intersection of line $L=\mathbf{u} e+\mathbf{v I}_{3}$ and (dual) plane $\Pi^{*}=\mathbf{n}-\delta e$ is:

$$
\Pi \cap L=\Pi^{*} \cdot L=-(\mathbf{n} \cdot \mathbf{u}) e-(\mathbf{v} \times \mathbf{n}-\delta \mathbf{u})
$$

The 'labels' tell us that this is a point at location:

$$
\frac{\mathbf{v} \times \mathbf{n}-\delta \mathbf{u}}{\mathbf{n} \cdot \mathbf{u}}
$$

- Example 2: Distance of point P to plane Π^{*} :

$$
\Pi \cap P=\Pi^{*} \cdot P=\delta-\mathbf{n} \cdot \mathbf{p}
$$

Scalar outcome: oriented distance.

- Example 3: Intersecting lines

Homogeneous Model

- Points are vectors p, q
- Distances directly as $p \cdot q=-\frac{1}{2}(\mathbf{p}-\mathbf{q})^{2}$
- Special point at infinity $e_{\infty}:\left(e_{\infty}\right)^{2}=0, e_{\infty} \cdot p=1$
- Altogether $(m+2)$-space representing E^{m}
- Blades represent k-spheres: 3-sphere $p \wedge q \wedge r \wedge s$
- Flats are spheres through infinity: line $e_{\infty} \wedge p \wedge q$
- Very compact intersections, reflections, etc.

Spheres and planes

- Sphere (c, ρ) is dually the vector $\sigma=c+\frac{1}{2} \rho^{2} e_{\infty}$
- Plane (\mathbf{n}, δ) is $\pi=\mathbf{n}-\delta e_{\infty}$
- Sphere σ perpendicular to plane π obeys $\pi \cdot \sigma=0$.
- Intersect two spheres:

$$
\sigma_{1} \wedge \sigma_{2}=\underbrace{\frac{\sigma_{1} \wedge \sigma_{2}}{\sigma_{2}-\sigma_{1}}}_{\text {perp. sphere }} \wedge \underbrace{\left(\sigma_{2}-\sigma_{1}\right)}_{\text {int. plane }}
$$

- Reflect line ℓ in plane π : $-\pi \ell \pi$.

Computational issues

- Actual geometrical computations like Plücker coordinates, so rather efficient.
- However, potential basis for elements much bigger: 2^{n+2} for homogeneous model of n-space (i.e. 32 for 3-space).
- All products are linear, so expressible as matrix multiply: $a \wedge b \rightarrow\left[a^{\wedge}\right][b]$, for 32×32 matrices. Some reducing tricks possible (and so done in GABLE), but too expensive in time and space.
- Should make efficient coding of only the necessary elements involved in a computation. Gives Plücker efficiency for spheres.

GABLE is freeware

For a free copy of GABLE and a geometric algebra tutorial, see
http://www.science.uva.nl/~leo/clifford/gable.html http://www.cgl.uwaterloo.ca/~smann/GABLE/

[^0]: DEMOvectors

