Using Local Optimization in Surface Fitting
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Abstract. Local optimization is used to set the free parameters in a
triangular surface fitting scheme, resulting in surfaces with better shape.
While some of the free parameters can be set to match curvature infor-
mation, other free parameters are independent of this information.

§1. Introduction

A large number of local parametric triangular surface schemes have been devel-
oped over the past fifteen years (see [8,9] for a survey of such schemes). These
schemes are local in that changes to part of the data only affect portions of
the surface near the changed data. Surprisingly, all of these schemes exhibit
similar shape defects. On closer inspection, it is seen that these schemes all
have a large number of free parameters that are set using simple heuristics.
By manually adjusting these parameters, one can improve the shape of the
surfaces [9].

In this paper, I will investigate using local optimization to set the free pa-
rameters in a local, triangular, split-domain, polynomial surface interpolation
scheme. More precisely, given a triangle of data, this scheme constructs three
triangular parametric polynomial patches, each of which interpolates two of
the positions and normals at the three vertices. Further, the patches meet
each other with G! continuity, and if used to fill a triangular polyhedron, the
resulting surface will also be G'. Local optimization is used to set the remain-
ing free parameters so as to minimize the error in interpolating second order
data at the corners. Thus, our data is a set of three vertices with normals
and second fundamental forms, (p;, 7, I;), for : = P,Q, R.

§2. The Modified Shirman-Séquin Scheme

I will be working with a modified version of Shirman-Séquin’s scheme [11,12].
Shirman and Séquin created a split domain scheme that fits three quartic
patches to a triangle of data. These triangles meet each other G, and if used
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Fig. 1. Controls points in a split domain scheme.

to fill a triangular polyhedron, the entire surface will be G!. Note that while
the patches are quartic, the boundaries of the patches are only degree three.

The Bézier control points [3] for the three patches are shown in Figure 1.
We will have use for both the cubic and quartic control points of the bound-
aries; thus, we shall denote the cubic control points with a superscript of 3
and the quartic with a superscript of 4. Using a modification of the Shirman-

Séquin scheme, for ijk € {PQR,QRP,RPQ}, we set these control points in
the following manner:
Vi=pi
E} =pi+ @it
E?2 =Dp; — 0‘1’27572>
I?l = (1 - ﬂz)Pz + ﬂi(E;'l2 + El%l)/2
1 ——— —
Ci; = g{cz(kz] + kin)Cij + kijCix
+ 2hij(E?2 - Efl) + hzk(Efl - VJ)} + Egl
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Cir = g{kikCij + ci(kij + kir)Cik
+ hij(vk - Efz) + 2hik(E?2 - Efl)} + E?2
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Vs = (11332 + 1222 + I;’%z)/?’

Here, the 1;; are vectors perpendicular to the normal ;. The o and 3 are
free parameters; any positive setting of these free parameters will give us a G*

surface scheme for most choices of the 1;; The c; are shape parameters used by
Jensen [4] in constructing the crossboundary functions (Shirman-Séquin used
Chiyokura-Kimura’s crossboundary function [1], which is the special case of
Jensen’s function when ¢; = 1).

The 6’5, ks, and hs are formed by Chiyokura-Kimura’s method: C/':] is
perpendicular to both the normal 7; and to the vector E}, — V; with the

sign of C/':] chosen to make k;; positive. Similarly, 6’; is perpendicular to the
normal 7 and Ef’2 — Vk. The ks and hs are given by:

If — V= kij - Cij + hij - (B3 — V5) (3)
It — Vi = ki - Cig, + har, - (Vi — E) (4)

The above ks and hs actually depend linearly on the f;s. Since we want
to optimize over the 3;, we will express the above equations in terms of the

— e~

B; by computing the ks and hs when the g;s are 1.0. Call these ]gi\j, hij, kik,

and i::k The above two equations then become
Iy = Vi = Bikij - Cij + Bihij - (B — Vj)

I, — Vi, = Bukir - Cin + Brhir - (Vi — E%)

Many of the degrees of freedom occur in the boundaries of the three
patches. In the discussion that follows, exterior boundaries refer to the bound-
aries given by the V; and E? . Interior boundaries refer to the boundaries given
by the V;, I} and V, for i € {P,Q,R} n € {1,2,3}.

Counting, we find a total of twelve shape parameters in the above equa-
tions. There are nine more shape parameters in the Shirman-Séquin scheme:

we can vary the IZL), and the I;; could be allowed to vary in the tangent plane.

We will set the 1;; by placing each boundary curve in a plane. The choice of
planar boundaries uses three degrees of freedom, while the particular planes
chosen use another three. I chose the plane passing through the two data
points and the average of the normals at the data points, which sets all six
degrees of freedom. The I;1s were restricted to a linear degree of freedom for
reasons of symmetry.

§3. Cubic Curve Optimization

In Figure 5, we see five surfaces. The surface on the left is an S-patch sur-
face [6]. The second surface on the left is the same S-patch surface subdivided
into triangular pieces. The corners of these pieces have been sampled for po-
sition, normal, and second fundamental form. The surface in the center is a
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Shirman-Séquin surface fit to this data. Our goal is to improve the quality of
this center surface. We will begin by improving the exterior boundary curves.

The left column of Figure 2 shows two of the exterior boundary curves
constructed for this ring data set by the standard Shirman-Séquin scheme
(these are the Bézier curves described by the control points V; and F;,,). Below
each curve is a curvature plot of the curve (the curved line is the curvature
plot; the straight line connects the curvature of the S-patch surface at the
endpoints of the curve). While the curvature of the top curve is distributed
relatively uniformly over the curve, the curvature of the bottom curve is seen
to concentrate at the endpoints of the curve, leaving a flat region in the middle.

— —

x/zx,( XA’(

L)L)

Fig. 2. Boundary curves and their curvature plots.

As discussed in [8], we can expect improved surface shape if we match
second order data with the boundary curves. Thus, we would like a solution
to the problem of interpolating the position, tangent direction, and curvature
at two points with a cubic curve. Klass solved this problem numerically [5],
while de Boor et. al. found an analytic solution to the problem [2]. Note that
a solution may not exist, and when it does exist, it may not be unique.

I implemented the de Boor-Hollig-Sabin technique and integrated it into
Shirman-Séquin’s scheme. While some areas of the surface improve, there
are regions where “lumps” appear in the surfaces as illustrated in the fourth
surface of Figure 5. Looking at the boundary curves again reveals the cause
of the shape defect.

The center column of Figure 2 shows the two curves constructed by the
deBoor-Hollig-Sabin method for the same data used in the first column. As
can be seen in the figure, both curves have a short first derivative at the right
end point and a spike in curvature near that end of the curve. This short
derivative causes a problem for the surface construction scheme because short
endpoint first derivatives lead to large values of the h;; (Equations 3 and 4).
These scalars are then used to weight vector quantities in the construction of
the C;; (Equations 1 and 2).
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Thus, the result of short derivatives at the end of the exterior boundaries
is that the C;; and any interior control points dependent on the C;; may be
positioned far from the triangle of data, as illustrated in Figure 3. In this
figure, there are two views of two patches constructed for the same three data
points. Two of the exterior boundary curves are identical in both patches.
However, the data along the third boundary has two cubic curves that inter-
polate the specified position, tangent directions, and curvatures. In the patch
on the left, we see that both tangents at the ends of this boundary curve are
of reasonable length, and that the interior control points are uniformly dis-
tributed. However, in the patch on the right, we see that one of the tangents
at the ends of this curve is short. The result is that the interior control points
have a more chaotic placement, leading to the lumps seen in Figure 5.

YA

R L

Fig. 3. Effect of short end tangents.

Thus, it is insufficient to construct exterior boundaries that match cur-
vature at their endpoints. We must ensure that the derivatives at the ends of
the curves are not too short. Therefore, we will solve a variation of the above
curve construction problem. We will find a cubic curve that interpolates the
position and tangent direction, and trades off interpolating the curvature with
interpolating prescribed first derivatives at the endpoints.

We want our construction to be scale independent. To achieve this goal,
we will always scale our problem to a “unit” problem by mapping the end-
points to be separated by unit distance. The first derivatives will scale “down”
linearly, while the curvatures scale “up” linearly. So, if we wish to find f such
that f interpolates our data at its endpoints as follows,

f(O) = Po, f,(O) = to ’ k(O) = ko

f(]') :P17 f,(]') K) k(l):kl
then we will map the data to

Py=Py, to =t/|Po—Pi|, ko=ko-|P,— Pl
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P1:P0+(P1—Po)/|P1—P0|, t—1>:E>/|P0—P1|, 76_1:k1'|P0—P1|-

After constructing f, we map the control points of f through the inverse
transformation, giving the control points of f. For notational simplicity, I
will use the unbarred symbols to denote the scaled data in the remainder of
this section.

Our goal is to satisfy the following set of equations:

|f,(0)_g>| =0, |f,(1)_¥| =0, (5)

1(0) x "(0) SO M) oy
) Fop w=s )

In general we cannot expect to satisfy all four equations simultaneously. Thus,

- k(O) = 07

we will rephrase this as a minimization problem. First, we square all four
equations to remove the derivative discontinuity. Then, we will rewrite these
equations in terms of the control points. From Figure 4, we see that the
derivatives f at the end points are:

f(0) = P

F1(0) =3(P1 — Py) = an to
F"(0) = 6(P, — 2Py + Py)
= 6[(Ps — Py) — a1ty /3 — 2a0 19 /3]
f(1) =Ps
F(1)=3(Ps — P) = anty
[(Py — P3) + aoo /3 + 20211 /3]

Fig. 4. Control points of derivatives.

We can rewrite Equations 5 in terms of the length of the first derivative,

i.e., setting t;) and tT; to be the desired length. We set our goal first derivative
to be of unit length for simplicity:

(g — 1.0)%, (a1 — 1.0)%. (7)

For the curvature equations (Equations 6), we square them to make them
strictly non-negative:

(£'(0) x £"(0))* _ 2ko(£'(0) x £"(0))

Ok FoE (8)
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(f'(1) x £"(1)* _ 2ka(£'(1) x (1))
[F1()l° [F1 ()P

I used an optimizer that needs the derivatives of the equations we opti-

+ k3 (9)

mize [7]. The two partials of Equations 7 are given by
Oa; —1)?

Oa;
where § is the Kronecker delta function.

We will be optimizing Equations 7, 8, and 9 over oy and «;. To expand
these equations in terms of the as, we will rewrite their terms with respect to

= [20zi - 2]61']'7

the as:

F1(0) x F"(0) = ag e x 6[(Ps — Py) — a1ty /3 — 200 1o /3]

—

:20é0[3%>><(P3—P0)—Oé1%>>< tl]

B%O(f'(O) < £(0)) = 2[3% x (Ps — Py) — a1ty x 11 ]
SO(J(0) % 1(0)) = ~2a0T5 % &
a1

F1(1) % f'(1) = 2a1[3% x (Po — P3) + agty X to]
SO (1) % J(1) = 2a T T
241
s (1(1) * (1) = 23T  (Po— P) 4 a0y x T

Now we will take the partials of Equations 8 and 9, and expand in terms
of our control points and free parameters. I will just state the result here; a
derivation may be found in [10]:

0 ((f’(O) (0 2ko(f(0) X £1(0) kg) -

doxg 17(0)[¢ |F1(0)[°
_16[3% x (Ps — Py) — a1ty x 112
[0><(3ago) 1t X 1] (A)
8](50[3%> X (P3 —f’o)—Oé]%> X ﬁ]
+ 3
Qg
4 ((f’(O) x f"(0))*  2ko(f'(0) x £"(0)) +kz> _
6 3 0] —
Ooy o o 4)
—8[3% x (Ps — Py) — arty x 1][te x 11 N dko[to % 1]
g g
4 ((f’(l) (1) 2k(F1(1) x (1)) +kz> _
6 3 1) —
Oog af oy

(4)
—8[3%; x (Py — P3) — apty x 1][te x 11 N Akq[to % t1
4

2
Qy a3
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9 ((f”(l) Xéf”(l))2__ 2k1(f’(1)3X M) +_k%> _

Ooy af oy
—16[3% x (Py— P3) — oty x t1)2 (4)
aj
i 8](51[3E>><(I’0—I’3)—Oé0t—0> X ﬁ]
3
ay

To summarize, I used the optimizer of Mahdavi-Amiri and Bartels [7]
to build cubic curves by optimizing Equations 7, 8, and 9 using the first
derivatives of these equations with respect to a9 and «; (Equations A) to
drive the optimizer. Examples of the resulting curves can be seen in the
right hand column of Figure 2. While these curves do not match the end
point curvatures exactly, their end point curvatures are close to the desired
curvatures, and none of the derivatives at the ends of the curves is short.
Further, the curvature distribution throughout the curves is more uniform.

I integrated this curve construction into the surface construction tech-
nique as follows: For each ¢jk € {PQR,QRP,RPQ},

1. Pick a plane through V; and V.
2. Construct the boundary V;, E2, E3,, V} using the curve construction
technique detailed in this section.
Once we have constructed all the E;;, we construct the interior control points
using the remaining formulas given in Section 2.

The right most surface in Figure 5 show the surface constructed by using
these optimized curves in the Shirman-Séquin scheme. Several of the shape
defects have disappeared, and no lumps have appeared. However, while this
is a significant improvement, there are still several “wrinkles” visible in the
surface. To attempt to remove these shape defects, we will look at adjusting
other shape parameters in the next section.

§4. Internal Degrees of Freedom

Internally, there are several degrees of freedom. There are degrees of freedom
in constructing the cross boundary derivatives and in constructing the interior
boundary curves. We would like to vary the degrees of freedom influencing
the cross boundary derivatives to improve the shape of the surface patch. One
choice is to use the degrees of freedom to improve the order of approximation.
Another idea is to vary these degrees of freedom and try to further match the
second fundamental forms at the data points. As discussed in this section,
neither of these approaches works in this setting.

Using the Shirman-Séquin settings of the as, 8s, and cs, the construc-
tion discussed in Section 2 has linear precision. If we construct boundary
curves with quadratic precision, we could hope to achieve quadratic precision.
However, using the Shirman-Séquin setting of the s and ¢s does not have
quadratic precision. Further, even if we use Jensen’s generalization of the
crossboundaries, we are unable to achieve quadratic precision [10].
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A second approach to setting the internal degrees of freedom would be
to match more data contained in the second fundamental forms at the data
points. In the previous section, we matched curvature at the ends of the
exterior boundary curves. There are two more ways in which we can match
the second fundamental forms at our data points: we can match curvature at
the ends of the interior boundaries, and we can match mixed partial derivatives
at the patch corners.

There are three curvature equations and six mixed partial equations. Ide-
ally, we would expand these nine equations in terms of our s and cs, re-express
these equations as minimization problems, and vary the #s and ¢s to minimize
a weighted sum of the equations. We might also want additional equations
to prevent the gs and cs from becoming too small or too large. However, the
last is a moot point: as detailed in [10], if we expand our curvature equations
in terms of the control points and unknowns (the 8s and the cs), then we find
the equations are independent of all the #s and the ¢s. Thus, we are unable
to vary the #s and ¢s to match curvature on the interior of our patches.

§5. Conclusions and Future Work

We have seen that improved settings of degrees of freedom in a G surface
fitting scheme yields a surface of better quality. Thus far, we have only found
improved settings for degrees of freedom on the boundaries of the surface
patches. Improved settings for the remaining degrees of freedom should be
found (the 8; and the ¢; of the previous section).

The degrees of freedom along the boundary were set by matching second
fundamental forms at the data points. We have shown that the internal
degrees of freedoms are independent of such data. Thus, an alternative way of
setting them needs to be found. Further, we would prefer to construct surfaces
for a triangulated set of points without normals and second fundamental forms
specified at these points. Techniques that do not require such data also deserve
investigation.

Fig. 5. Ring surface.
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