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Figure 1: a) Bilinear interpolation. b) Data ow diagram of algorithm.(* Run de Casteljau's curve algorithm on the rows of the net *)for i := 0 to n do (* for each row *)for k := 1 to m� 1 dofor j := 0 to m� k doPi;j := (1 � v) � Pi;j + v � Pi;j+1;(* Now run de Casteljau on the �rst two columns of the net *)for j := 0 to 1 do (* for each column *)for k := 1 to n � 1 dofor i := 0 to n� k doPi;j = (1� u) � Pi;j + u � Pi+1;j ;(* now we have a bilinear patch in Pi;j *)Lu;0 := (1� u) � P0;0 + u � P1;0; Lu;1 := (1 � u) � P0;1 + u � P1;1;L0;v := (1� v) � P0;0 + v � P0;1; L1;v := (1� v) � P1;0 + v � P1;1;(* Compute the normal by computing partial derivatives; ignore scale *)@F@u := L1;v � L0;v; @F@v := Lu;1 � Lu;0;(* �nally, evaluate the function...*)F := (1� v)Lu;0 + vLu;1; !!!We now sketch the proof of our algorithm. A more complete proof can be foundin [MDW93]. Let F (u; v) be a degree n�m tensor product surface. Looking at the blossom fof F [Ram88], we see that, when evaluating F (p; q) the algorithm �rst computes the bilinearfunction L(u; v) = f(u; p; : : : ; p; v; q; : : : ; q):The correctness of the algorithm follows immediately from the following relations:F (p; q) = L(p; q)108



@F@u (p; q) = n[L(1; q)� L(0; q)]@F@v (p; q) = m[L(p; 1)� L(p; 0)]:We now compare our algorithm to the bilinear algorithm for evaluating an n � n tensorproduct. In the bilinear algorithm, successive levels of control points are computed perform-ing bilinear interpolation on sets of four control points on the previous level, typically usingthree linear interpolations, requiring six multiplications and three additions. For an n � ntensor product surface, there are Pni=1 i2 = n(n+1)(2n+1)6 such combinations.For our algorithm, each control point on a new level is a linear combination of two pointsfrom the previous level, with each new point being computed using two multiplications andone addition. When evaluating the �rst block of arguments, there are (n + 1)Pn�1i=1 i =(n+1)n(n�1)2 combinations. For the second block, there are 2Pn�1i=1 i = n(n� 1) combinations.After these �rst two evaluations, we have reduced the control net to a bilinear patch andwe need an additional six multiplications and three additions to compute the point on thesurface.Thus, the total number of multiplications used by the bilinear algorithm isn(n + 1)(2n + 1);while our algorithm uses (n+ 1)(n + 1)n+ 2(n + 1)nmultiplications. (Both algorithms require half the number of additions as multiplications.)While both algorithms have the same asymptotic complexity (O(n3)), our algorithm isasymptotically twice as fast as the bilinear algorithm. In particular, our algorithm is com-putationally more e�cient for surfaces of bi-degree n � 2.Note that the number of multiplications at each step of the bilinear algorithm can bereduced from six to four, although three additions would still be required. With this variantof the bilinear algorithm, our algorithm is slightly slower when evaluating a bilinear patch,but is still more e�cient for n � 2, and asymptotically our algorithm only requires two-thirdsthe number of multiplications and only half the additions.A few notes are in order. First, although we emphasizes the bivariate case in this paper,the algorithm presented readily generalize to multivariate tensor products [MDW93]. Second,it is computationally advantageous to evaluate the tensor product �rst in the parametricdirection of lowest degree. Third, we stopped at the next to last step of the de Casteljaualgorithm since we were only interested in �rst derivatives. Higher order derivatives can becomputed if the evaluation is stopped at an earlier stage. Finally, note that Sederberg hasdeveloped an O(n2) modi�ed Horner's algorithm for evaluating the positions and tangentsof rational tensor product B�ezier surface patches [Sed].Acknowledgements: This work was supported in part by the Xerox Corporation,Hewlett-Packard, the Digital Equipment Corporation, and the National Science Foundationunder grant CCR-8957323.References[Far93] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Aca-demic Press, San Diego, third edition, 1993.109
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